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Twisted graphene bilayers provide a versatile platform to engineer metamaterials with novel emergent
properties by exploiting the resulting geometric moiré superlattice. Such superlattices are known to host
bulk valley currents at tiny angles (α ≈ 0.3°) and flat bands at magic angles (α ≈ 1°). We show that tuning
the twist angle to α� ≈ 0.8° generates flat bands away from charge neutrality with a triangular superlattice
periodicity. When doped with �6 electrons per moiré cell, these bands are half-filled and electronic
interactions produce a symmetry-broken ground state (Stoner instability) with spin-polarized regions that
order ferromagnetically. Application of an interlayer electric field breaks inversion symmetry and
introduces valley-dependent dispersion that quenches the magnetic order. With these results, we propose
a solid-state platform that realizes electrically tunable strong correlations.
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Controllably engineering quantum states of matter is one
of the leading goals of modern physics. This basic idea has
been realized in a plethora of platforms ranging from cold-
atom setups [1–3] to atom-by-atom deposited solids [4,5].
In recent years, the discovery of graphene has opened
numerous new avenues [6], including the possibility of
stacking two-dimensional crystals and forming so-called
van der Waals materials [7], which allow us to engineer
exotic states [7–11]. Tuning the relative angle α between
graphene layers [12] and applying electric potentials V
across the layers [11,13] have played central roles in
purposely designing the physical properties of such sys-
tems. In this Letter, we combine these two ideas in a new
parameter regime: (i) we identify an angle α that generates
flat bands with strong correlations leading to a magnetic
instability, while (ii) an electric bias V across the layers
reintroduces dispersion and thus allows us to dynamically
tune the magnetic response of the bilayer system.
Stacking graphene layers at a finite relative angle α

produces a moiré superlattice [see Fig. 1(a)] with properties
that are sensitive to the twist angle [14–16]. The spectrum
of the superlattice is composed of graphene bands that are
folded back to the mini-Brillouin zone where they bundle
into separate groups; these can be tuned to become flat at
small twist angles α. Such weakly twisted bilayer graphene
then provides a versatile platform to explore strongly
correlated physics. Much work has focused on the so-
called magic angle α ¼ 1.1° producing two flat bands near
charge neutrality (each fourfold degenerate) with strong
correlations [9,17–20] and superconductivity [10,21,22]
appearing under weak doping. The question arises whether
other angles and bands can be used in engineering novel
properties. Here, we show that tuning the twist to the angle
α� ≈ 0.8° flattens the bands above and below the ones near
charge neutrality. We find that doping these bands to

half-filling with �6 electrons per triangular supercell
produces a correlated state with ferromagnetic order.
Such flat bands have been termed “pseudo-Landau

levels” (PLLs) [23–25]; they can be understood as the
result of artificial gauge fields that arise from nonuniform
strain in graphene monolayers [26–28] or twist-induced
strain between layers [29]. Proper tuning of such strain
leads to hopping phases that interfere destructively, local-
izing the states and producing flat bands [23,24]. Similar
flat-band modes have been proposed in other twisted
multilayer systems [30], such as a tiny-angle graphene
bilayer [31], graphene trilayers [32], graphene bi-bilayers
[33,34], and dichalcogenide multilayers [35].
An alternative way to engineer the electronic states in

multilayers of Dirac materials is to apply an interlayer bias
V to induce valley Berry curvature [13]. The latter results
from breaking inversion symmetry, that induces topology
through (compensating) valley fluxes [11,36]. Such valley
fluxes and associated valley currents are particularly
pronounced at small twist angles and cause dispersive
splittings between bands [36]. This motivates the idea of
engineering the bandwidth and correlations via electrical
bias and geometric twist. Here, we combine twist-induced
emergent flat bands at small twist α and an interlayer bias V
in order to manipulate the strong-correlation physics in a
flat-band material with valley-topological properties.
Flat-band magnetism in twisted bilayer graphene has

been discussed before with a focus on the bands near charge
neutrality and manipulation of the magnetic state by
interlayer bias [37–39] and by pressure [39]. Rather than
manipulating the 0th PLL near charge degeneracy, we focus
on the �1 PLLs that become optimally flat at the smaller
angle α� ≈ 0.8° where valley currents are more pronounced.
Different from the 0th PLL bands that are described by
an effective honeycomb lattice and flat Dirac cones, the
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�1 PLLs are described by a triangular lattice. We study the
delocalization effect of the bias-induced local valley fluxes
and find that these act against the subtle spatial interference
that generates the original flat bands. The bias-induced
dispersion then reduces the correlations and thus the ferro-
magnetic (quasi-)order in the material, leading to electrically
tunable magnetism. We thus arrive at a new platform where
correlations and topology can be controlled at the same time.

Below, we start from the real-space bilayer tight-binding
model and find flat bands at an angle α� ¼ 0.8°; the states
in these �1 PLLs are strongly localized on the triangular
superlattice of the moiré structure. We include local
interactions on a mean-field level and find the magnetic
instability. In a third step, we include the interlayer bias and
map out the local Berry curvature in real-space that
introduces band dispersion and consequently reduces the
magnetic order.
Twisted bilayer graphene is formed by stacking two

honeycomb lattices of carbon with a small twist angle α,
resulting in a moiré structure of (approximate) periodicity
LM that grows inversely with α, see Fig. 1(a). This supercell
can exceed the lattice constant a in size by 1–2 orders of
magnitude and features regions with well-defined local
stacking orders AA, AB, and BA, with A and B denoting the
inequivalent atomic sites in a each hexagonal unit cell. We
model the twisted bilayer with a real-space tight-binding
Hamiltonian

H0 ¼
X
hi;ji;s

t c†i;scj;s þ
X
i;j;s

t⊥ij c
†
i;scj;s −

X
i;s

μ c†i;sci;s; ð1Þ

where cð†Þi;s destroys (creates) an electron at site ri ¼
ðxi; yi; ziÞ in one of the layers (zi ¼ �d=2) with spin s ¼
↑;↓ and μ is the chemical potential; t is the nearest-
neighbor hopping within each layer and t⊥ij ¼ t⊥½ðzi− zjÞ2=
jri− rjj2�e−ðjri−rjj−dÞ=l is the twist-angle dependent hopping
[40] from ri to rj with amplitude t⊥ ≃ 0.12t, range
l ≃ 0.13a, and the interlayer distance d ≃ 1.4a. We utilize
a scaling relation that brings the low-energy physics of
small angles α to larger ones by appropriately increasing
the interlayer hopping amplitude t⊥ [31,37,41–43]. This
allows us to perform our analysis at moiré unit cells that are
small enough for numerical treatment.
The twist α effectively creates a nonuniform interlayer

hopping with a corresponding gauge field [29,44]. This, in
turn, leads to a destructive interference that generates our
�1 PLL flat bands that naturally lend themselves for
strong-correlation physics. In Fig. 1(b), we present the
low-energy density of states (DOS) of the bilayer as a
function of its twist angle. Three main PLL bands are
indexed with −1, 0, 1, which become flat at the marked
specific angles. In this work, we are interested in the �1
bands with states that are localized around the AA regions
of the superlattice, see Fig. 1(c). At negative (positive)
energies, as a function of the twist angle α, the targeted
band evolves from having a negative (positive) effective
mass to a positive (negative) one, see Figs. 1(d)–1(f). At our
“flat-band” angle α� ≃ 0.8° [Fig. 1(e)], we achieve maximal
isolation of the �1 PLL bands in energy. They hold up to
�4 electrons per moiré unit cell and doping with �6
electrons corresponds to their half-filling. Note that the two
0 PLL bands hold �4 electrons each and become flat and

(a) (c)

(b)

(d) (e) (f)

FIG. 1. Tunability of the single-particle bilayer graphene
properties as a function of the twist angle. (a) Stacking two
honeycomb lattices (light/dark blue) with small twist angle α
leads to a hexagonal moiré superlattice. The long-range structure
has a moiré unit cell (opaque overlay) with varying local stacking
order AA=AB=BA, where A and B correspond to the two atomic
sites in each of the stacked graphene unit cells. (b) Density of
states (DOS) as a function of twist angle α, showing peaks
ascribed to emergent flat bands associated with three main
pseudo-Landau levels (PLLs). Grey dotted lines denote the
position of Fermi levels at half-filled �1-PLL bands: The two
0-PLL bands near charge neutrality hold 4 electrons each;
similarly, each of the �1-PLL bands holds 4 electrons and thus
is half-filled at a doping level of �6 electrons per moiré cell. At
the flat-band angle α� ¼ 0.8°, the bandwidth of the �1 PLLs
becomes minimal. (c) Local density of states (LDOS) of states in
the −1 PLL, showing the emergence of an effective triangular
lattice of states localized around the AA regions. Dashed lines
mark effective hopping amplitudes in an effective triangular
superlattice Hamiltonian, see text. (d)–(f) Band structures for
α < α�, α ¼ α� and α > α� illustrating how the �1-PLL bands
evolve to generate flat bands at α� (marked in blue). (f) The 0 PLL
flattens at the magic angle [15,16]. Note that there is a gap to the
�1 PLLs (small in this plotted scale).
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nearly-degenerate at the magic angle α ≃ 1.1° [14–
16,45–48].
The �1-PLL states arrange in a triangular lattice of

“flower”-shaped Wannier orbitals centered around the AA
regions, see Fig. 1(c). The effective low-energy physics for
this triangular superlattice and its corresponding bands can
be described by a single-site triangular-lattice tight-binding
Hamiltonian with particles involving four flavors associ-
ated with spin and valley degrees of freedom and effective
C3v-symmetric hoppings. It is the absence of Dirac points
in the minibands that enables such a triangular model that
reproduces the band dispersion of the targeted band
of the original bilayer tight-binding Hamiltonian [43]. In
contrast, the nearly-flat bands at magic angles necessitate
a description in terms of Wannier orbitals arranged on a
honeycomb superlattice [45–49]. Our low-energy, four-
flavor Hamiltonian is associated with an (approximate)
local SU(4) symmetry; such a model has been predicted to
display dþ id superconductivity close to a Mott insulating
state [50,51], potentially providing a playground to realize
unconventional interacting states.
We now explore the effect of electronic interactions at α⋆

when the system is doped with �6 electrons. We introduce
interactions in a minimal way using a local Hubbard term,
yielding the interacting Hamiltonian H ¼ H0 þHU with

HU ¼ U
X
i

ni↑ni↓; ð2Þ

where U is the interaction strength and ni;s ¼ c†i;sci;s is the
local density operator at each site. We chose the interaction
strength U ¼ 2t which accounts for a physical charging
energy and our numerical rescaling, see Refs. [43,52,53].
We address this interaction term self-consistently using
the spin-collinear mean-field ansatz ni↑ni↓ ≈ hni↑ini↓þ
ni↑hni↓i − hni↑ihni↑i. We find that the interaction
[Eq. (2)] mainly affects the nearly-flat band of the super-
lattice; i.e., it induces a Stoner instability that splits the
band, see Fig. 2(a). This interaction-induced exchange
splitting is associated with a net magnetic moment of
approximately 2μB per moiré unit cell (obtained by
integrating over the mildly antiferromagnetic texture)
aligned ferromagnetically between cells. Given the macro-
structure of the system, this yields a triangular superlattice
of local magnetic moments, see Fig. 2(b).
The emergence of magnetism in this flat-band angle

regime is analogous to observations of magnetic instabil-
ities at other angles and dopings [37,38], in particular, in
magic-angle superlattices [54–56]. Unique to our regime is
the sensitivity of the�1-PLL bands to an interlayer voltage
bias: as elaborated below, the latter modifies the electronic
spectrum of the bilayer and hence allows for the tuning of
the aforementioned magnetic order.
We now discuss the implications of an interlayer voltage-

bias as described by the Hamiltonian H ¼ H0 þHV (at
U ¼ 0) with

HV ¼ V
2

X
i;s

sgnðziÞc†i;sci;s; ð3Þ

where V is the interlayer bias and sgnðziÞ ¼ �1 for the top
and bottom layers, respectively. This bias lowers the
symmetry from C3v to C3 by breaking the inversion
symmetry between the layers. Finite V broadens and
eventually washes out the singularity in the density of
states [Fig. 3(a)] by introducing a dispersive valley splitting
into the band structure [Fig. 3(b)]. The substantial impact of
the bias V on these flat bands is in stark contrast to the
magic-angle regime, where it was found that a small bias
has a negligible effect [21].
To better understand the mechanism that lifts the valley

degeneracy, we analyze the spatial profile of the frequency-
resolved valley-Berry curvature [57]

∂ΩvðrÞ
∂ω ¼

Z
BZ

d2k
ð2πÞ2

ϵαβ
2

hrjGvð∂kαG
−1
v Þð∂kβGvÞjri; ð4Þ

where
R
BZ d

2k � � � denotes integration over the Brillouin
zone and ϵαβ is the Levi-Civita tensor. We denote Gv ¼
½ω −HðkÞ þ i0þ�−1Pv as the Green’s function of the Bloch
Hamiltonian HðkÞ ¼ H0ðkÞ þHVðkÞ, and Pv is the valley
polarization operator [31,58,59] that weighs the states with
�1 depending on which graphene valley (K, K0) they
originate from. This allows us to find the valley-Chern
number through integration over energies and over the unit
cell, i.e., Cv ¼

R
UC d

2r
R
μ
−∞ dω∂ωΩvðrÞ, which only takes

nonzero values if time-reversal or inversion symmetry are
broken. By breaking inversion symmetry, the interlayer
bias V produces a finite valley-Chern number with the
spatial texture in the Berry curvature as shown in Fig. 3(c),

(a) (b)

FIG. 2. Effect of local mean-field interactions [Eq. (2) with
U ¼ 2t] in twisted bilayer graphene at physical twist angle
α� ¼ 0.8°. (a) At −6 electron doping, the half-filled flat band
[cf. Fig. 1(e)] exhibits an exchange splitting between the up and
down spins. (b) The resulting moiré structure of local magnetic
moments. It forms a superlattice of finite collinear moments
(circled “↓”) in real space. The red (blue) color indicates a
positive (negative) local expectation value hSzi ¼ Mz of the spin
operator that is associated with a net ferromagnetic moment of
each AA region and a weak local antiferromagnetic texture
therein. For numerical calculation, we rescaled the parameters
to α ≃ 2.86°, t⊥ ¼ 0.46t [43].
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featuring alternating signs between AB=BA-stacked
regions [13,60,61]. These, in turn, can be interpreted as
a fake staggered valley magnetic field. At smaller angles
α < α�, this spatial texture in the Berry curvature sharpens
up and eventually leads to the valley helical networks [36]
recently observed in experiments [11].
If we regard the formation of flat bands in Fig. 1(e) as the

result of fine-tuned destructive interference between neigh-
boring Wannier orbitals [15,16], we can explain how the
dispersive valley splitting in Fig. 3(b) arises: the emergent
valley-chiral magnetic field induced by the interlayer
bias alters the relative phases between the Wannier orbitals,
and creates additional valley splittings. This effect can
be captured by the effective triangular superlattice
Hamiltonian via the inclusion of Peierls phases in the
hoppings [43]. These phases correspond to a finite mag-
netic flux per triangle that averages to zero over one unit
cell, see Fig. 3(c), reminiscent of Haldane’s model for
Chern insulators [62]. As the two valleys are time-reversal-
symmetric partners these fluxes have opposite sign, thus
canceling one another locally. To summarize, the interlayer
bias in the full model takes the role of the valley-magnetic
flux per plaquette in the low-energy model.
We can now analyze how the interlayer bias affects

the interaction-induced correlated state by considering
the Hamiltonian H ¼ H0 þHU þHV . We expect that the
interlayer-bias-induced band dispersion modifies the mag-
netic state discussed in Fig. 2. Indeed, as shown in Fig. 3(d),
the ground state magnetization is substantially quenched
even formoderate bias (V ≃ 100 meV).Hence, the interlayer
bias serves as an external control for the correlated state at our
flat-band angle. We once more emphasize that this feature is
in striking contrast to magic-angle graphene, where a small
interlayer bias does not substantially change the correlated
state [21].

There are three interesting avenues for further inves-
tigations beyond the scope of this work. First, we empha-
size that our analysis does not take into account possible
lattice relaxations [63,64], which may impact the specific
angle at which the targeted band becomes sufficiently flat.
Second, the existence of twist-angle disorder [65] is likely
to modify the width of the targeted band and uniform twist
angles may be required in order to observe the correlated
state—similarly to the phenomenology shown at the magic
angle [22]. Third, the triangular nature of the superlattice
suggests that a spin-spiral state may exist that is energeti-
cally competitive with the ferromagnetic configuration
discussed above. Indeed, we performed our self-consistent
mean-field analysis for several candidates and found
indications for a 120° spin-spiral state (maximally anti-
ferromagnetic) that competes with the collinear order. This
observation leads us to conclude that the system is
profoundly frustrated, with sizable antiferromagnetic
exchange coupling to second-neighbor moiré cells. Since
such triangular lattices have been proposed to give rise to
spin-liquid phases [66], further investigations into our
proposed flat-band system might unveil a nontrivial reali-
zation of such physics.
To summarize, we have shown that electronic correla-

tions can arise in twisted graphene bilayers at fillings of 6
electrons/holes per moiré unit cell. This correlated regime
is shown to appear at angles around 0.8° at doping levels of
�6 electrons per moiré unit cell, for which the chemical
potential falls into one of the�1-pseudo-Landau levels. For
that regime, we show that interactions promote the for-
mation of local magnetic moments in the moiré supercells
arranging on a triangular lattice. Furthermore, we have
shown that the interlayer bias can be used to control the
magnetic instability. The origin of this tunability was
demonstrated to be related to the control over an effective

(a) (b) (c) (d)

FIG. 3. Effects of interlayer bias V on the flat bands of bilayer graphene at twist angle α� ¼ 0.8°, (a)–(c) without and (d) with
interactions. (a) The sharp peaks in the density of states (DOS) broaden and vanish with increasing interlayer bias V; dotted lines mark
Fermi energies for dopings �6. (b) At −6 electron doping, the half-filled flat bands disperse upon introduction of a small interlayer
voltage bias [V=t ¼ 0.07, dashed line in panel (a)] to form two independent valley-polarized bands (green and purple) [cf. Fig. 1(e)].
(c) The local valley-Berry curvature in position space ∂ΩvðrÞ=∂ω [Eq. (4)] [integrated over the bands shown in (b)] can be understood in
terms of an emergent valley magnetic field in the AB=BA regions. This field destroys the fine-tuned interference, inducing a finite
bandwidth in the originally flat bands. (d) The total interaction-induced [U ¼ 2t] mean-field magnetization Mz at the twist angle α�
decreases with interlayer bias V. The bias-induced dispersion quenches the interactions and the formation of magnetic order. For
numerical calculation, we rescaled the physical parameters to α ≃ 2.86°, t⊥ ¼ 0.46t [43].
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staggered valley-magnetic field in the heterostructure, that
modifies fine-tuned interferences in the superlattice states,
thereby substantially affecting the low-energy dispersion.
Our results put forward a new regime in twisted graphene
multilayers hosting correlations that result in a magnetic
instability that is highly tunable with weak interlayer
biases.
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