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We evaluate the density matrix of an arbitrary quantum mechanical system in terms of the quantities
pertinent to the solution of the time-dependent density functional theory (TDDFT) problem. Our theory
utilizes the adiabatic connection perturbation method of Görling and Levy, from which the expansion of the
many-body density matrix in powers of the coupling constant λ naturally arises. We then find the reduced
density matrix ρλðr; r0; tÞ, which, by construction, has the λ independent diagonal elements
ρλðr; r; tÞ ¼ nðr; tÞ, nðr; tÞ being the particle density. The off-diagonal elements of ρλðr; r0; tÞ contribute
importantly to the processes unaccessible via the density, directly or by the use of the known TDDFT
functionals. Of those, we consider the momentum-resolved photoemission, doing this to the first order in λ,
i.e., on the level of the exact exchange theory. In illustrative calculations of photoemission from the quasi-
2D electron gas and isolated atoms, we find quantitatively strong and conceptually far-reaching differences
with the independent-particle Fermi’s golden rule formula.
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Time-dependent (TD) density functional theory
(TDDFT) [1–3] is a widely used powerful method to study
the time-evolution and the excitation processes in quantum
mechanical systems. Its success is due to the crucial
simplification arising from the substitution of the prohibi-
tively complicated many-body problem with the reference
single-particle one, keeping (apart from approximations
possibly invoked) the exact TD electron density of the
original many-body system. The description of a number of
physical processes (e.g., optical absorption [4,5], slowing
of ions in matter [6,7], impurity resistivity of metals [8],
etc.) can be rigorously reduced to finding the TD electron
density, making TDDFT the method of choice for studying
those classes of phenomena.
There exist, at the same time, fundamental processes and

the corresponding experimental methods, the theory of
which cannot, on the very general physical grounds, be
formulated explicitly in terms of the particle density. For a
clear example, the momentum-resolved photoemission
requires the knowledge of the probability in the momentum
space, which, as long as we remain within the framework of
the consistent quantum mechanics, cannot be found
directly from the probability in the coordinate space, the
latter giving the particle density. The necessary information
is, in this case, contained in the reduced density matrix
(DM) ρ [9]. The real space ρðr; r0; tÞ and the momentum
space ρðp;p0; tÞ representations of ρ are related by the
double Fourier transform, while the diagonal elements in
the corresponding representations (probabilities) cannot be
related directly [10].
To find the reduced DM is a complicated problem,

generally speaking, taking us back to the many-body

theory. In this Letter we come up with the observation
that the solution of this task can be greatly facilitated if the
TDDFT problem for the same system has been already
solved. We use the power of the adiabatic connection
perturbation method [11,12] and show that, changing the
electron-electron (e-e) interaction constant λ continuously
from zero (for the reference system) to one (for the physical
system), while keeping the particle density nλðrÞ ¼ nðrÞ
unchanged, we determine not only the Kohn-Sham (KS)
[13] potential vsðr; t; λÞ, but also the many-body DM ρ̂λ.
The latter can be readily reduced to the one-DM ρλðr; r0; tÞ
expressed through the KS TDDFT quantities. We empha-
size, and this is the motivation of this work, that
ρλ¼1ðr; r0; tÞ is, while the KS DM is not, the true reduced
DM of the physical system (cf., Ref. [14]).
Practically, the above program can so far be implemented

to the first order in λ only, which results in the construction
of the TD exact-exchange (TDEXX)-based theory of the
DM. We apply this theory to the problem of the momen-
tum-resolved photoemission, finding quantitative and
qualitative differences with Fermi’s golden rule. We use
atomic units (e2 ¼ me ¼ ℏ ¼ 1).
Real-time formalism for DM to the first order in the

interaction.—We write the adiabatic connection
Hamiltonian for an N-particle system [11,12]

Ĥðt; λÞ ¼
XN
i¼1

�
−
1

2
Δi þ vextðri; tÞ þ ṽðri; t; λÞ

�

þ
XN
i<j

λ

jri − rjj
; ð1Þ
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where λ ∈ ½0; 1�, ṽðr; t; 0Þ ¼ vsðr; tÞ − vextðr; tÞ, vext and
vs being the external and KS potentials, respectively, and
we keep the particle density λ independent. The corre-
sponding N-body DM obeys Liouville’s equation

i
∂ρ̂ðt; λÞ

∂t ¼ ½Ĥðt; λÞ; ρ̂ðt; λÞ�: ð2Þ

Expanding to the first order in λ (but making, so far, no
assumption regarding the strength of the external TD field),
we write

2
64
Ĥðt; λÞ
ρ̂ðt; λÞ
ṽðt; λÞ

3
75 ¼

2
64
Ĥ0ðtÞ
ρ̂0ðtÞ
ṽ0ðtÞ

3
75þ λ

2
64
Ĥ1ðtÞ
ρ̂1ðtÞ
ṽ1ðtÞ

3
75; ð3Þ

where

Ĥ0ðtÞ ¼
XN
i¼1

�
−
1

2
Δi þ vextðri; tÞ þ ṽ0ðri; tÞ

�
; ð4Þ

Ĥ1ðtÞ ¼
XN
i¼1

ṽ1ðri; tÞ þ
XN
i<j

1

jri − rjj
; ð5Þ

and the corresponding density matrices evolve as

i
∂ρ̂0ðtÞ
∂t ¼ ½Ĥ0ðtÞ; ρ̂0ðtÞ�; ð6Þ

i
∂ρ̂1ðtÞ
∂t ¼ ½Ĥ0ðtÞ; ρ̂1ðtÞ� þ ½Ĥ1ðtÞ; ρ̂0ðtÞ�: ð7Þ

Let for t ≤ 0 the system be in its ground state with the KS
wave function j0i, where jαi is the orthonormal complete
set of the Slater-determinant eigenfunctions of Ĥ0ð0Þ. Let
at t ¼ 0 the TD potential be switched on. Then, since Ĥ0ðtÞ
is self-conjugate, jαðtÞi, which satisfy

i
∂jαðtÞi
∂t ¼ Ĥ0ðtÞjαðtÞi; jαð0Þi ¼ jαi; ð8Þ

constitute also an orthonormal complete set at each t. From
Eqs. (6) and (7) we obtain (Supplemental Material [15],
Sec. I)

hαðtÞjρ̂0ðtÞjβðtÞi ¼ δα0δβ0; ð9Þ

hαðtÞjρ̂1ðtÞjβðtÞi ¼ iðδα0 − δβ0Þ
Z

t

−∞
hαðt0ÞjĤ1ðt0Þjβðt0Þidt0;

ð10Þ

where δαβ is the Kronecker symbol. Transforming Eqs. (9)
and (10) to real space and reducing to the one DM, we find

ρ0ðr; r0; tÞ ¼
X
i∈occ

ϕiðr; tÞϕ�
i ðr0; tÞ; ð11Þ

ρ1ðr; r0; tÞ ¼
X
i∈occ

j∈unocc

h0ðtÞjρ̂1ðtÞj0ijðtÞiϕiðr; tÞϕ�
jðr0; tÞ

þ ðr ↔ r0Þ�; ð12Þ

where ϕi are KS orbitals, 0ijðtÞ is the propagated ground-
state Slater-determinant 0ðtÞ with the ith orbital replaced
with the jth one [the matrix elements in Eq. (12) are the
only ones surviving the integration]. Equation (12) reduces
to

ρ1ðr; r0; tÞ

¼ −i
X
i∈occ

j∈unocc

Z
t

−∞
dt0

�Z
vxðr1; t0Þϕ�

i ðr1; t0Þϕjðr1; t0Þdr1

þ
Z

ϕ�
i ðr1; t0Þρ0ðr1; r2; t0Þϕjðr2; t0Þ

jr1 − r2j
dr1dr2

�

× ϕiðr; tÞϕ�
jðr0; tÞ þ ðr ↔ r0Þ�; ð13Þ

where vx ¼ vs − vext − vH, and vH are the exchange and
the Hartree potentials, respectively.
Setting r0 ¼ r in Eq. (13) and equating to zero (the

density must be λ independent), we retrieve the TD version
of the optimized effective potential equation [16–18] for
vxðr; tÞ. On the other hand, if above we allowed for
nonmultiplicative effective potentials, then Eq. (13) would
reproduce the long-known result [19] that the Hartree-Fock
(HF) potential nullifies ρ1ðr; r0; tÞ. Consequently, the (TD)
HF reduced DM is the first-order approximation to the
physical one. As discussed above, this is not the case
with TDDFT.
It is verifiable by the direct substitution that ρ0 of

Eq. (11) and ρ1 of Eq. (13) satisfy the Liouville-type
equations

i
∂ρ0ðr; r0; tÞ

∂t ¼ ½ĥsðtÞ; ρ0ðtÞ�; ð14Þ

i
∂ρ1ðr; r0; tÞ

∂t ¼ ½ĥsðtÞ; ρ1ðtÞ� − ½vxðtÞ; ρ0ðtÞ�

þ
Z

ρ0ðr; r1; tÞρ0ðr1; r0; tÞ

×

�
1

jr1 − r0j −
1

jr1 − rj
�
dr1; ð15Þ

where ĥsðtÞ is the KS Hamiltonian. Equation (13) or,
alternatively, Eq. (15) determine the time evolution of the
reduced DM to the first order in the interaction, and they are
expected to be useful in the nonlinear dynamics. We,
however, turn now to the linear response regime and focus
on the photoemission spectroscopy (PES) application.
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Linear-response theory.—From now on we assume the
TD external potential

vð1Þextðr; tÞ ¼
1

2
½vð1Þextðr;ωÞe−iωt þ c:c:� ð16Þ

to be weak. We expand ρðtÞ ¼ ρð0Þ þ ρð1ÞðtÞþ
ρð2ÞðtÞ þ � � �, where the superscripts stand for the orders
in the strength of the TD perturbation, while the subscripts
remain reserved for the orders in the e-e interaction. To the
zeroth order in the latter, we obtain for the probability per
unit time for an electron to be emitted into the state ϕfðrÞ
(Supplemental Material [15], Sec. II) [20],

lim
t→∞

hϕfjρð2Þ0 ðtÞjϕfi
t

¼
X
i∈occ

AfiðωÞδðω − ϵf þ ϵiÞ; ð17Þ

where

AfiðωÞ ¼
π

2
jhϕfjvð1Þs ðωÞjϕiij2; ð18Þ

reproducing the conventional Fermi’s golden rule. To the
first order in the interaction, Eq. (15) leads to
(Supplemental Material [15], Sec. III)

lim
t→∞

hϕfjρð2Þ1 ðtÞjϕfi
t

¼
X
i∈occ

ΔAfiðωÞδðω − ϵf þ ϵiÞ þ ΔBfiðωÞδ0ðω − ϵf þ ϵiÞ; ð19Þ

ΔAfiðωÞ ¼ −πRe
�
hϕfjvð1Þs ðωÞjϕii�

�
hϕfjvð1Þx ðωÞjϕii þ

X
k≠i

Cki
hϕfjvð1Þs ðωÞjϕki

ϵi − ϵk

þ
X
k≠f

Cfk
hϕkjvð1Þs ðωÞjϕii

ϵf − ϵk
þ
X
kl

ðfk − flÞ
hϕkjvð1Þs ðωÞjϕli
ϵk − ϵl − ω − iη

Z
ϕiðrÞϕ�

fðr0Þϕ�
l ðrÞϕkðr0Þ

jr − r0j drdr0
��

; ð20Þ

ΔBfiðωÞ ¼ −
π

2
jhϕfjvð1Þs ðωÞjϕiij2Cii; ð21Þ

Ckm¼hϕkjvð0Þx jϕmiþ
Z

ρð0Þ0 ðr;r0Þϕ
�
kðrÞϕmðr0Þ
jr−r0j drdr0; ð22Þ

fk being the orbitals’ occupancies. Equations (19)–(22)
generalize Fermi’s golden rule by including interaction to
the first order.
The two terms in Eq. (19) have distinct physical mean-

ing: The one with the delta function accounts for the change
in the amplitude of the emission due to the e-e interaction.
The one with the delta-function derivative accounts for the
excitation energies shifts, due to the same reason. To
demonstrate this, we combine Eqs. (17) and (19) as

lim
t→∞

hϕfjρð2ÞðtÞjϕfi
t

¼
X
i∈occ

½AfiðωÞ þ ΔAfiðωÞ�δðω − ϵf þ ϵiÞ

þ ΔBfiðωÞδ0ðω − ϵf þ ϵiÞ
¼

X
i∈occ

½AfiðωÞ þ ΔAfiðωÞ�δ½ω − ϵf þ ϵi þ Δωi�; ð23Þ

where

Δωi ¼
ΔBfiðωÞ
AfiðωÞ

¼ −Cii: ð24Þ

Importantly, the energy-shift [Eq. (24)] is a ground-state
property of the KS system. We now turn to illustrative
calculations.
Photoemission from quasi-2D electron gas with one

filled subband.—For quasi-2D electron gas (Q2DEG) with
one filled subband and normally applied electric field
(schematized in Fig. 1) the analytical solution to the
TDEXX problem exists [21], which makes it ideally suited
for the illustration of our theory by a simple calculation.
Then

vxðz; tÞ ¼ −
1

ns

Z
F2ðkFjz − z0jÞ

jz − z0j nðz0; tÞdz0; ð25Þ

where F2ðuÞ ¼ 1þ ½L1ð2uÞ − I1ð2uÞ�=u, L1 and I1 are the
1st-order modified Struve and Bessel functions, ns ¼R
∞
−∞ nðz; tÞdz is the time-independent 2D density, and kF
is the corresponding 2D Fermi radius. From Eqs. (18), (20)–
(21), we find Af0ðωÞ, ΔAf0ðωÞ, and Δω (Supplemental
Material [15], Sec. IV). In particular,

ΔωðkkÞ ¼ −
Z

jμ0ðzÞj2Gkk ðzÞdz; ð26Þ

where kk is the conserving in-plane momentum,

Gkk ðzÞ ¼ vð0Þx ðzÞ þ kF

Z
jμ0ðz0Þj2SkkðkFjz − z0jÞdz0; ð27Þ
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Skk ðuÞ ¼
Z

∞

0

J1ðxÞJ0ðkkkF xÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ u2

p dx; ð28Þ

and JnðxÞ are Bessel functions [see Ref. [15], Sec. IV for the
plot of Skk ðuÞ].
In Fig. 2 we plot the ionization potential (IP). The IP with

the interactions included (the solid curve for the EXX
calculation) depends on kk. This dependence signifies a
fundamental difference between the KS and the many-body
dynamics: Our system is uniform in the xy plane and,
therefore, xy and z coordinates separate in the KS equa-
tions, resulting in the motion of a KS electron in the z
dimension being unaffected by the value of its in-plane
momentum. In particular, the IP in the KS dynamics is kk
independent (shown with horizontal lines). Secondly,
depending on kk, the energy shift can be either positive
or negative. Therefore, for larger kk, we can emit an
electron with the photon energy ω less than the KS work

function −ϵ0. We stress that these results are not in
contradiction to the theorem stating that the minus highest
occupied KS orbital energy is IP [22] (IP-theorem), since
the latter has been proven for finite number of particles (and
then kk is not defined), while here the number of particles is
infinite [23].
Our expansion of DM in λ may not necessarily be based

on TDEXX, but we could have used other TDDFT schemes
as well. Then the resulting series could, likewise, be
expected to converge to the physical DM. In Fig. 2 we,
therefore, compare EXX results to those of the local density
approximation (LDA) (dashed lines). An eloquent con-
clusion is that, while the KS eigenvalues, being auxiliary
quantities, are completely different in the respective
approximations (horizontal lines), the IPs we obtain, being
approximations to observables, are found close to each
other in EXX and LDA. Obviously, the latter is of great
practical consequence, since it shows that inexpensive local
functionals can be successfully used in the framework of
this theory.
In Fig. 3, we plot the interacting electrons’ emission

intensity and compare it with its Fermi’s golden rule
counterpart. It must be noted that the golden rule is
overwhelmingly often used in the literature with the KS
field in the matrix element replaced with the bare external
one (dipole approximation), while the screening has been
included only rather recently [24]. It is, therefore, instruc-
tive to compare our results to the both variants of the
conventional formula. Without interaction, the threshold of

FIG. 2. IP obtained with the use of Eq. (26) for Q2DEG with
one filled subband, vs the in-plane momentum, shown for three
values of the density parameter rs. EXX and LDA-based quantities
are plotted with solid and dashed lines, respectively. The minus
KS eigenvalues −ϵ0 are shown with horizontal straight lines.

FIG. 1. Left: Schematics of the Q2DEG with one filled
subband. Right: Schematics of the wave function of the only
filled subband.

FIG. 3. Spectra of photoemission from the Q2DEG with one
subband filled. Results of our theory [sum of Eqs. (18) and (20)]
are shown with the thin solid red, dashed-dotted green, and thick
solid purple lines, for kk=kF ¼ 0, 0.5, and 1, respectively. Results

for Fermi’s golden rule using the KS potential vð1Þs [Eq. (18)], and

with the bare external potential vð1Þext , are shown with dashed and
dotted lines, respectively. The threshold of photoemission is
indicated in each case by a short vertical dotted straight line.
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the photoemission lies at −ϵ0, shown in Fig. 3 with a long
vertical dotted line, and it is the same for all values of kk. As
discussed above, this is not the case with the interaction
included, and the corresponding thresholds ωthðkkÞ ¼
−ϵ0 − ΔωðkkÞ for three values of kk are shown by short
vertical dotted lines. The spectra at different kk are very
different from each other, signifying the important quanti-
tative role of the interaction effect. The case of kk ¼ kF
deserves special attention: Here Δω > 0, which makes
emission possible at ω < −ϵ0. In this regime, the spectrum
is strongly affected by the transitions to the discreet excited
states, resulting in resonances at the corresponding ener-
gies. Since within TDEXX these transitions are undamped
[21], the amplitudes of the corresponding peaks are not in
the same scale with the rest of the spectra.
Isolated atoms.—Our second example concerns photo-

emission from atoms. In Table I we list the KS EXX
eigenvalues, the energy shifts, and the total IP according to
the present theory. The following important observations
can be made. First, for the highest energy levels, the shifts
Δω disappear, which is in agreement with the IP theorem.
Second, for inner levels, Δω are large and they change the
KS eigenvalues in the right direction to the experimental IP.
These shifts are, however, too big, making the theoretical IP
to overestimate the experimental ones, while the KS values
underestimate them. Obviously, further terms in the series
in λ are necessary to improve the agreement with experi-
ment. Third, our ϵi þ Δωi are found very close to the HF
eigenvalues. This has a fundamental reason: As follows
from the discussion after Eq. (13), the latter give physical IP
to the first order in the interaction, which also ϵi þ Δωi do,
but not ϵi.
As seen from Table II, similarly to the case of Q2DEG,

the use of LDA instead of EXX does not change the IP
significantly: while the orbital eigenvalues differ largely in
the corresponding approximations, adding Δω brings them
close together.

In conclusion, assuming a solution to the TDDFT
problem for a quantum mechanical system known, we
have evaluated the reduced density matrix ρðr; r0; tÞ to the
first order in the e − e interaction, at the fixed particle
density, as stipulated by TDDFT. The knowledge of
ρðr; r0; tÞ extends the theory to phenomena, which are
beyond the reach of the pure TDDFT with presently
existing observable functionals. As a particular application,
we have derived an extension to Fermi’s golden rule for the
momentum-resolved stationary photoelectron spectros-
copy, which accounts for the interparticle interaction.
Our calculations for the quasi-2D electron gas with one

filled subband and for isolated atoms manifest an important
role of the e-e interactions in the TDDFT of PES. In
particular, our theory captures a remarkable effect of the
correlation between the in-plane and the normal motion in a
laterally uniform system, which is a feature due to the
many-body interactions.
Going beyond the bare exchange remains the main

challenge in the future development of the theory.
Although, on the formal level, our method contains all
the correlations at λn, n ≥ 2, at present only the inclusion of
the λ2 term looks feasible. Since this method involves the
TDDFT calculation followed by the construction of the
reduced DM, it comes very encouraging that, as both our
examples show, the inaccuracies of the former are com-
pensated by the latter. This opens the way to use the
inexpensive local TDDFT functionals without compromis-
ing the accuracy of the final results, which greatly con-
tributes to the practicability of this method.
Among other extensions of the theory, we note that the

nonlinear dynamics using Eq. (15) provides a natural
pathway to the quantum-mechanically consistent inclusion
of interactions in the theory of photoemission in the time
domain [27–32]; presently this theory relies on the ansatz
of the identification of the KS particles with physical
electrons [30]. Finally, we anticipate it conceptually fea-
sible to extend the theory to evaluate the two-electron
density matrix, with an immediate application to the double
photoelectron spectroscopy.TABLE I. KS EXX orbital eigenvalues ϵi, the energy shiftsΔωi

of Eq. (24), and the corresponding interaction-corrected IP −
ðϵi þ ΔωiÞ for several spherically symmetric spin neutral atoms,
compared to the experimental [25] and the HF [26] values.

Atom −ϵi −Δωi −ðϵi þ Δωi) −ϵexpi −ϵHFi
He(1s) 0.9179 −9.6 × 10−14 0.9179 0.9036 0.9179
Be(1s) 4.1147 0.6169 4.7316 4.384 4.7327
(2s) 0.3091 −2.7 × 10−6 0.3091 0.3425 0.3093
Ne(1s) 30.767 1.9951 32.762 31.985 32.772
(2s) 1.7054 0.2187 1.9241 1.781 1.9304
(2p) 0.8478 −5.4 × 10−5 0.8477 0.7960 0.8504
Mg(1s) 46.267 2.7567 49.024 48.174 49.032
(2s) 3.0927 0.6697 3.7624 3.454 3.7677
(2p) 1.8696 0.4114 2.2811 2.0212 2.2822
(3s) 0.2526 3.2 × 10−5 0.2526 0.2811 0.2531

TABLE II. KS LDA and EXX orbital eigenvalues and the
corresponding interaction-corrected IP of the atoms in Table I.

Atom −ϵLDAi −ϵEXXi −ðϵLDAi þ ΔωLDA
i Þ −ðϵEXXi þ ΔωEXX

i Þ
He(1s) 0.5170 0.9179 0.9354 0.9179
Be(1s) 3.7956 4.1147 4.7547 4.7316
(2s) 0.1736 0.3091 0.3123 0.3091
Ne(1s) 30.229 30.767 32.849 32.762
(2s) 1.2656 1.7054 1.9741 1.9241
(2p) 0.4428 0.8478 0.8958 0.8477
Mg(1s) 45.890 46.267 49.090 49.024
(2s) 2.8454 3.0927 3.7874 3.7624
(2p) 1.6615 1.8696 2.3102 2.2811
(3s) 0.1423 0.2526 0.2542 0.2526
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