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The process of a positron—bound-electron annihilation with simultaneous emission of two photons is
investigated theoretically. A fully relativistic formalism based on an ab initio QED description of the
process is worked out. The developed approach is applied to evaluate the annihilation of a positron with
K-shell electrons of a silver atom, for which a strong contradiction between theory and experiment
was previously stated. The results obtained here resolve this longstanding disagreement and, more-
over, demonstrate a sizable difference with approaches so far used for calculations of the positron—
bound-electron annihilation process, namely, Lee’s and the impulse approximations.
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Since the first observation of positrons [1], investigations
of their interaction with atoms, molecules, and solids are of
unaltered interest (see, e.g., Refs. [2–5] and the review [6]).
Extensive investigations of the positron annihilation proc-
esses gave rise to numerous applications ranging from
astrophysical searches [7–9] and positron-induced Auger-
electron spectroscopy [10,11] to studies of the defects in
metals and semiconductors [12,13], the dynamics of cataly-
sis [11], and positron-emission tomography [14,15]. In
particular, the angular distribution of the photon pairs from
annihilation defines the spatial resolution of the defect
analysis and tomography. Therefore, a quantitative under-
standing of the positron—bound-electron annihilation is
highly required by the ongoing growth of studies consid-
ering positron-matter interaction as well as by upcoming
positron facilities of a new generation, e.g., at the Lawrence
Livermore National Laboratory [16–19] and the ELI-NP
Research Centre [20,21].
The positron—bound-electron annihilation can proceed

with the emission of one, two, or even more photons. More
often than not, two-quantum annihilation dominates over
other channels. This process, however, has not yet been
described rigorously within the framework of QED and
with a proper account of the interaction with a nucleus. So
far the calculations of the positron—bound-electron two-
quantum annihilation were just based on two approxima-
tions: Lee’s approach [22] for ultraslow (thermalized) and
the impulse approximation for ultrafast positrons. For slow
positrons, the dominant contribution to the overall annihi-
lation cross section with atomic targets arises from the

nonrelativistic valence and outer shell electrons. These
processes can be well described in the framework of Lee’s
nonrelativistic approximation [22]. On the basis of this
approximation the theoretical approach which shows a
remarkable agreement with related experimental studies
was developed [23–26]. For ultrafast positrons, in contrast,
the impulse approximation can be applied, in which all
particles are assumed to be free and where the active
electron is represented by a stationary wave packet of
superimposed plane wave states. In this approximation, the
annihilation process is based on the formulas which were
derived almost a century ago by Dirac [27] and Tamm [28].
However, these two approximations cannot be applied
to the annihilation of positrons with inner-shell electrons
and for collision energies, at which the interaction with a
nucleus plays a significant role. As an example, we refer to
the experiment where the two-quantum annihilation of
300 keV positrons with K-shell electrons of silver was
measured [29], and for which the theoretical cross sections
by Gorshkov and co-workers [30,31] differ by more than
an order of magnitude. This example demonstrates that the
theory is not yet well developed in the region where the
kinetic energy of a positron is commensurate with its rest
mass.
Here, we develop a fully relativistic formalism based on

the ab initio QED description of the two-quantum annihi-
lation of positrons with bound electrons. In this formalism,
positron- and electron-nucleus interaction is treated non-
perturbatively. As the first application, we use the developed
approach for the description of the two-quantumannihilation
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of 300 keV positrons with K-shell electrons of silver which
was studied experimentally in Ref. [29]. In this experiment,
the double differential angular cross section (DDACS)
was measured for photons which are emitted under 30°
and −100° with respect to the incident positron direction.
Our DDACS of 22ð1Þ mbarn= sr2 is in excellent agreement
with the experimental value 15.4ð12.8Þ mbarn=sr2, and
which resolves a longstanding disagreement between theory
and experiment. Additionally, we compare the results of the
developed exact approach with ones obtained within the
Lee’s and impulse approximations as well as with result of
Ref. [30] and discuss possible reasons of the discrepancies.
The differential cross section for the two-quantum

annihilation of a positron with a bound electron in the
relativistic units ℏ ¼ 1, c ¼ 1, m ¼ 1 is given by [32,33]

dσ
dk1dk2

¼ 4α2
ð2πÞ6
vi

jτj2δðEa þ εi − ω1 − ω2Þ; ð1Þ

where α is the fine structure constant, εi and vi are the
energy and velocity of the positron, respectively, Ea is the
energy of the active electron, and τ is the amplitude whose
explicit form will be specified below. In the present Letter,
we will consider only the double differential angular cross
section defined by

dσ
dΩ1dΩ2

¼
Z

dω1dω2ω
2
1ω

2
2

dσ
dk1dk2

: ð2Þ

This cross section is assumed to be averaged over the
angular momentum and spin projections of the electron and
positron, respectively, and summed over the polarizations
of the emitted photons. The solid angles of the emitted
photons Ω1;2 are defined by the azimuthal φ1;2 and polar
θ1;2 angles (see Fig. 1). Here the x − z plane is spanned by
the momenta of the incoming positron pi and one of the
emitted photons k1 with the z axis fixed along the direction
of pi. Here, we utilize the independent-particle approxi-
mation, in which the positron and the active electron move
in an effective (Coulomb and screening) potential created
by the nucleus and all the other electrons. The screening
potential is induced by the Hartree charge density of these

remaining electrons. Based on our prior analysis for the
Rayleigh scattering of high-energetic photons [34], we
expect that the independent particle approximation stays
valid for the processes involving inner-shell electrons of
heavy systems, where the correlation effects are suppressed
by a factor 1=Z (Z is the nuclear charge number).
The amplitude of the two-quantum annihilation of the

positron with the electron in the bound a state is given by
two Feynman diagrams shown in Fig. 2, which corresponds
to the following expression [32,33]:

τ ¼ −
X
n

�hð−piμiÞjα ·A�
k2λ2

jnihnjα ·A�
k1λ1

jai
Ea − ω1 − Enð1 − i0Þ

þ hð−piμiÞjα ·A�
k1λ1

jnihnjα ·A�
k2λ2

jai
Ea − ω2 − Enð1 − i0Þ

�
: ð3Þ

Here
P

n implies the complete summation over the whole
spectrum, including the integration over the positive and
negative continuum parts, μi is the helicity of the incoming
positron, α is the vector of Dirac matrices, and the wave
function of the plane wave photon with the polarization λ is
given by

Akλ ≡AkλðrÞ ¼
ϵλeik·rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ωð2πÞ3

p : ð4Þ

The amplitude [Eq. (3)] determines the differential cross
section [Eq. (1)] uniquely and, thus, describes the two-
quantum annihilation process completely. Let us turn to the
details of the calculation of this amplitude.
The infinite summation

P
n in Eq. (3) is replaced by a

sum over a quasicomplete set of the Dirac equation
solutions. These solutions are obtained by using the
dual-kinetic-balance finite basis set method [35] with basis
functions constructed from B splines [36,37]. Such an
approach yields the wave functions of the quasistates n,
including the bound state a, but it can barely be applied for
constructing the wave function of a positron with a given

FIG. 1. Geometry (in the ion rest frame) of the positron (eþpi
)-

bound-electron annihilation with the emission of two photons γk1

and γk2
.

FIG. 2. Feynman diagrams for the two-photon annihilation of
the positron eþpi

with the bound electron in the a state. The double
lines indicate the electron-positron propagators and wave func-
tions in the external field of the nucleus and remaining electrons,
while the wavy lines represent the emitted photons, γk1

and γk2
.
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energy. The incoming positron with the four-momentum pi
and the helicity μi is treated as an outgoing electron
with the four-momentum −pi and the helicity μi [38,39].
The explicit form of the wave function of such a particle
can be found, e.g., in Refs. [40,41]. The numerical
construction of this wave function is performed with the
use of the modified RADIAL package [42]. We note that the
constructed wave functions of the incoming positron,
quasistates n, and initial bound state a take into account
the interaction with the effective (Coulomb and screening)
potential to all orders. To calculate the matrix elements,
we utilize the well-known multipole expansion technique.
As a result, one gets the infinite multipole summations over
the photon and positron multipoles, which are further
restricted by analyzing the convergence property. More
details of the developed method will be presented in a
forthcoming publication.
As the first application of our ab initio approach, we

determine the most probable direction for the emission of
(one of the) photons in the process of the two-quantum
annihilation of the 300 keV positron with the K-shell
electrons of a silver (Z ¼ 47) atom and compare it with one
studied in the experiment [29]. For this purpose, we explore
how DDACS [Eq. (2)] varies with the angle θ2 in the range
between 75° and 180° for the emission angles θ1 and φ2

being fixed as in Ref. [29], namely, θ1 ¼ 30° and
φ2 ¼ 180°. However, note that in the original experiment
[29] the emission angle θ2 ¼ 100° and was kept fixed. The
dependence of the DDACS on the angle θ2 is represented in
Fig. 3, which also shows the convergence of the DDACS
with respect to the number of the photon multipoles Lmax
that need to be taken into account in the expansion of the
photons wave function. About 30 multipoles are sufficient
to obtain well-converged differential cross sections, giving
rise to 60 partial waves in the decomposition of the positron

wave function. We performed all computations both, in
length and velocity gauges, and obtained perfect agreement
as seen from Fig. 3. Moreover, the differential cross
sections differ by less than 1% if other than the Hartree
screening potential is applied.
We can also compare our ab initio QED results with

those from the Lee’s and impulse approximations. In Lee’s
approximation [22], which has been widely used for the
description of the two-quantum annihilation of slow (ther-
malized) positrons [23–26], (i) the Dirac-Coulomb propa-
gator is replaced by a free electron one, (ii) the binding
energy of the initial electron a and the kinetic energy of the
incoming positron are assumed to be much smaller than the
electron rest mass, and (iii) the Dirac electron and positron
wave functions are replaced by the corresponding two-
component Schrödinger-Pauli wave functions. Making use
of these assumptions in Eq. (3), one can obtain the
expression for the two-quantum annihilation amplitude [22]

τðLeeÞ ¼ i
2
hð−piμiÞðSPÞjðk1−k2Þ · ½A�

k2λ2
×A�

k1λ1
�jaðSPÞi: ð5Þ

Here jð−piμiÞðSPÞi and jaðSPÞi refer to the Schrödinger-Pauli
wave functions [33] of the positron and electron, respec-
tively. Figure 4 compares the DDACS from this approxi-
mation with our ab initio results and shows that Lee’s
approximation overestimates the DDACS by an order of
magnitude when compared with the rigorous QED predic-
tion. This discrepancy mainly arises from the large
(300 keV) kinetic energy of the positron and the importance
of the binding and the relativistic effects for the inner-shell
electrons of a silver atom. Let usmention that for low-energy

FIG. 3. Double differential angular cross section [Eq. (2)] for
the two-quantum annihilation of the 300 keV positron with the
K-shell electrons of a silver atom for different numbers of the
photon multipoles Lmax taken into account. The emission angles
θ1 ¼ 30° and φ2 ¼ 180°.

FIG. 4. Double differential angular cross section [Eq. (2)] for
the two-quantum annihilation of the 300 keV positron with the
K-shell electrons of a silver atom. The calculations performed
within the exact approach, Lee’s, and impulse approximations are
represented by the black solid, red dashed, and blue dotted lines,
respectively. The theoretical result from Ref. [30] is shown by a
black square, and the experimental value [29] is depicted by a
green circle with error bars. The logarithmic scale is chosen for
the y axis.
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positrons and light systems this approximation agrees well
with the more exact calculations. As an example, the total
cross section for the two-quantum annihilation of 5 keV
positron with 1s electron of the H-like argon (Z ¼ 18)
equals 0.38 barn in Lee’s approximation which agrees with
the rigorous QED value 0.37 barn.
In the relativistic impulse approximation (IA), it is

assumed that the interaction with a nucleus can be
neglected for high-energetic positrons and that the process
can be viewed as a free positron annihilation with a
stationary wave packet of superimposed plane wave elec-
tron states. Following the derivation which has been
previously described in detail for the Compton scattering
[43,44], one can obtain the DDACS for the two-quantum
annihilation in the IA

dσðIAÞ

dΩ1dΩ2

¼ 1

vi

Z
dpρaðpÞ

dWfree

dΩ1dΩ2

ðpÞ: ð6Þ

Here ρaðpÞ is the momentum distribution of the initial
bound-electron a state and dWfree=dΩ1dΩ2 is the double
differential angular probability for the two-quantum anni-
hilation of a free positron and a free electron with the
momentum p [32]. The DDACS being calculated in the IA
is compared with other calculations in Fig. 4. From this
figure, it is seen that the IA, like Lee’s approximation,
overestimates the DDACS by an order of magnitude. This
can be understood by the neglected interaction between the
positron and the nucleus and, hence, an (unphysically)
increased overlap of the positron and electron densities.
This, in turn, leads to the growth of the cross section.
Finally, we compare the obtained results with the pre-

vious theoretical predictions by Gorshkov and co-workers
[30], which is displayed in Fig. 4 by a black square. These
authors started from the free-particle approximation for
the two-quantum annihilation and have evaluated the
corrections of the first order in the interaction with the
nucleus. This approach corresponds to the expansion in
powers of αZ and αZ=v which in the case under inves-
tigation approximately equal 0.34 and 0.44, respectively.
The significant deviation from the exact treatment, how-
ever, indicates that such a perturbation expansion fails to
describe the DDACS of the considered process.
Figure 4 compares the different theoretical predictions

for the DDACS with the experimental value [29]. First, let
us note the extra factor 2 in the denominator of Eq. (2) in
Ref. [29]. This factor should appear if the contributions of
the same quantum states are accounted twice, which does
not apply for the DDACS. Therefore, here and below the
results from Ref. [29] are multiplied by a factor 2. From
Fig. 4 it is seen that all approximate theoretical results,
including that of Ref. [30], are by an order of magnitude
away from the experimental value, and quite in contrast to
our rigorous QED treatment that provides the prediction
which is rather close to the experimental result.

However, the direct comparison of the calculated
DDACS with the experimental value might not be fully
justified in Fig. 4. This is caused by the fact that the
measured value just represents an detector-averaged
DDACS. In the experiment [29], the detectors had a
50 mm diameter windows and were placed 8 cm away
from the target. The size of the detectors correspond to a
solid angle Ω1 ¼ Ω2 ¼ 0.286 sr. To allow for a quantita-
tive comparison with the experiment, we evaluate the
detector-averaged DDACS within the exact QED approach
as well as within the Lee’s and impulse approximations. In
the case of the exact calculation, 20 photon multipoles were
taken into account. The integration over the polar and
azimuthal photon emission angles is performed by a four-
and six-point Gauss-Legendre quadrature. For the averaged
DDACS, we estimate a relative uncertainty of about 5%
because of neglected high photon multiples and an uncer-
tainty in the angular integration. In Table I we compare the
DDACS and detector-averaged DDACS calculated within
the exact approach, Lee’s and impulse approximations with
the experimental value [29]. From the table, one can see
that the averaging of the DDACS strongly decreases
because the planar geometry and detector position at
≈180° just refers to the maximum of the cross section.
Any deviation from this geometry leads to the drop of the
DDACS. From Table I, one can also see that the results of
ab initio QED approach are in excellent agreement with the
experimental value.
In conclusion, a fully relativistic QED description of the

two-quantum annihilation of a positron with a bound
electron is presented for the very first time. This novel
approach has been applied for the annihilation of 300 keV
positrons with the K-shell electrons of silver. Our result for
the double differential angular cross section is in excellent
agreement with the experimental value [29] and, thus,
resolves a longstanding disagreement between theory and
experiment. It was also shown that none of the approaches so
far used for the calculation of the positron—bound-electron
two-quantum annihilation can be applied in this case. We
believe that the exact approach developed here can be
extended to many other cases of the positron annihilation
and, thus, can allow one to establish more precise validity

TABLE I. DDACS (second column) and detector-averaged
DDACS (third column) in mbarn=sr2 for the two-quantum
annihilation of the 300 keV positron with the K-shell electrons
of a silver atom. The experimental value from Ref. [29] is
multiplied by a factor 2 (see the text for details).

Approach DDACS Averaged DDACS

Theory [30] 500
Lee’s appr. 230 134
Impulse appr. 582 72
Exact QED 61(1) 22(1)
Experiment [29] 15.4(12.8)
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criteria for the so far employed approximations as well as to
help in the interpretation of the experimental data in various
applications of the positron annihilation processes.
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