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We derive ab initio optical potentials from self-consistent Green’s function theory and compute the
elastic scattering of neutrons off oxygen and calcium isotopes. The comparison with scattering data is
satisfactory at low scattering energies. The method is benchmarked against the no-core shell model with
continuum calculations, showing that virtual excitations of the target are crucial to predict proper
fragmentation and absorption at higher energies. This is a significant step toward deriving optical potentials
for medium mass nuclei and complex many-body systems in general.
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Introduction.—Reactions are a fundamental aspect of
nuclear physics since they are used experimentally to
determine many properties of atomic nuclei. They are also
a key component to significant scientific questions, such as
the reaction networks that control nucleosynthesis.
Unfortunately, first principles theoretical descriptions for
scattering on medium mass nuclei are still lacking. Even
though ground state properties and excited states can be
calculated ab initio, the complexity of many-body dynam-
ics forces us to model the reaction mechanisms in terms of
phenomenological optical potentials. This lack of consis-
tency among the structure and reaction theories has been a
major issue for nuclear physics for decades.
Optical models are an effective way to decouple the

scattering wave function of the projectile from the internal
structure of the target. Thus, microscopic (nonphenomeno-
logical) formalisms have also been proposed to compute
them [1,2], although working implementations are still
scarce. In this Letter, we discuss an ab initio calculation of
optical potentials that starts from saturating nuclear forces
and compares favorably with low-energy scattering data. In
doing so, we also identify key ingredients needed to
improve the predictability at higher energies. This repre-
sents a successful step toward gaining insight into the
reaction dynamics and to performing reliable predictions of
scattering with exotic nuclei.
Many-body Green’s function methods are particularly

suited to pursue this goal for medium and heavy nuclei
since their central quantity, the self-energy, is naturally
linked to the Feshbach theory of optical potentials [1,3].
While the particle part of the self-energy is equivalent to the
original formulation of Feshbach, its hole part also
describes the structure of the target [2]. Hence, it facilitates
a consistent treatment of scattering and structure.
Some related (semi)phenomenological attempts to

exploit Green’s function methods include the nuclear field

theory [4,5] and its extension to nuclear transfer reactions
[6,7]. Another incarnation of Green’s function related
theories is the dispersive optical model [8], which is a
data driven formulation of global (local and nonlocal)
potentials constructed as the best possible parametrization
of a microscopic self-energy [9,10]. The nuclear structure
method was applied recently obtaining good reproduction
of 40Ca scattering based on the Gogny D1S interaction [11].
Other approaches based on the nucleon-nucleon T-matrix
and folding with the nuclear density have proven to be
effective [12–15].
Ab initio methods have been successful in direct calcu-

lations of scattering when only a few nucleons are at play.
Quantum Monte Carlo calculations have been historically
used for light nuclei [16–18]. The no-core shell model with
resonating group method (NCSM-RGM) or with con-
tinuum (NCSMC) have been successful in calculating
scattering and transfer reactions for light targets [19–21].
Coupled cluster theory has also been employed with a
Gamow basis for proton scattering from 40Ca [22] and
combined with a Green’s function approach to compute
phase shifts for 16O and Ca isotopes [23,24]. On the other
hand, the self-consistent Green’s function (SCGF) formal-
ism [25,26] can calculate the microscopic optical potential
directly even for heavier nuclei. This approach has been
used to compute phase shifts [27] and to investigate
analytical properties of optical models [28]. However, these
early studies were limited to two-nucleon (NN) forces, and a
comparison to the experiment has been hindered by the lack
of realisticHamiltonians capable of reproducing the radius of
the target.
Three-nucleon (3N) interactions were recently formu-

lated and implemented for SCGF theory in Refs. [29–31].
Moreover, the introduction of saturating nuclear inter-
actions [32] has allowed for a good reproduction of radii
and binding energies across the oxygen [33] and calcium
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chains [34]. Hence, we are now in a position to mean-
ingfully compare first principles approaches to scattering
data in medium mass nuclei. In the following, we present
state-of-the-art SCGF calculations to test current ab initio
methods and compare our results to NCSM-RGM and
NCSMC computations with NN and NNþ 3N inter-
actions. We then use a saturating chiral Hamiltonian to
study elastic scattering of neutrons from 16O and 40Ca.
Formalism.—The Hamiltonian used to compute the

self-energy is

HðAÞ ¼ T̂ − T̂c:m:ðAþ 1Þ þ V̂ þ Ŵ; ð1Þ

where T̂c:m:ðAþ 1Þ is the center of mass kinetic energy for
the A-nucleon target plus the projectile, and V̂ and Ŵ are
the NN and 3N interactions. Ŵ is included as an equivalent
effective two-body interaction, averaged on the correlated
propagator as discussed in Refs. [30,35]. The SCGF
calculation proceeds by solving the Dyson equation,
gðωÞ ¼ g0ðωÞ þ g0ðωÞΣ⋆ðωÞgðωÞ, in a harmonic oscillator
(HO) basis of Nmax þ 1 shells, where g0ðωÞ is the free
particle propagator, and the irreducible self-energy Σ⋆ðωÞ
has the following general spectral representation:

Σ⋆
αβðE;ΓÞ ¼ Σð∞Þ

αβ þ
X

i;j

M†
α;i

�
1
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�
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þ
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�
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�

r;s
N†
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where α and β label the single particle quantum numbers of
the HO basis, Σð∞Þ is the correlated and energy independent
mean field, and Γ sets the correct boundary conditions. We
performed calculations with the third order algebraic
diagrammatic construction [ADC(3)] method, where the
matrix M (N) couples single particle states to intermediate
2p1h (2h1p) configurations,C (D) is the interaction matrix
among these configurations, and K contains their unper-
turbed energies [36,37]. All intermediate 2p1h and 2h1p
states (respectively labeled by indices i, j and r, s) were
included. For Nmax ¼ 13, this incorporates configurations
up to 400 MeVof excitation energy and partial waves of the
projectile up to angular momentum j ¼ 27=2 for both
parities.
The resulting dressed single particle propagator can be

written in the Källén-Lehmann representation as

gαβðE;ΓÞ ¼
X

n

hΨA
0 jcαjΨAþ1

n ihΨAþ1
n jc†βjΨA

0 i
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: ð3Þ

The poles of the forward-in-time propagator, EAþ1
n − EA

0 ,
indicate then the energy of the nth exited state of the

(Aþ 1)-nucleon system with respect to the ground state
of the target A. Hence, they are directly identified
with the scattering energy. For each many-body state
jΨAþ1

n i in the continuum, the corresponding overlaps
ψnðαÞ≡ hΨAþ1

n jc†αjΨA
0 i are associated with the elastic

scattering wave function through Feshbach theory [1,38].
Although the scattering waves are unbound, the self-

energy Σ⋆ðωÞ associated with the optical potential is
localized, and it can be efficiently expanded on square
integrable functions. Hence, we proceed by calculating
Eq. (2) in HO basis but transform it to momentum space
before solving the scattering problem. This will ensure that
the proper asymptotic behaviors of both bound and
scattering states are obtained. The optical potential for a
given partial wave (l, j) is then expressed as

Σ⋆l;jðk; k0;E;ΓÞ ¼
X

n;n0
Rn;lðkÞΣ⋆l;j

n;n0 ðE;ΓÞRn0;lðk0Þ; ð4Þ

which is nonlocal and energy dependent, where Rn;lðkÞ are
the radial HO wave functions in momentum space.
Through Eqs. (2) and (4), the SCGF approach provides
a parametrized, separable, and analytical form of the optical
potential.
The parameter Γ sets the time ordering boundary

conditions, but it does not affect the solution of the
many-body problem that comes from the diagonalization
of the equation of motion [5,27,37]. However, we retain it
in Eq. (4) to introduce a small finite width for the 2p1h and
2h1p configurations, which would otherwise be discretized
in the present approach. We checked that this does not
affect our conclusions below.
We use the intrinsic Hamiltonian of Eq. (1) and large

enough HO spaces so that the intrinsic ground state
decouples from the center of mass motion [39]. Even if
decoupled, the latter is not fully suppressed and the self-
energy (4) is still computed in laboratory frame. We correct
for this by rescaling the scattering momentum appropri-
ately, which naturally leads to the correct center of mass
(c.m.) energy Ec:m: and reduced mass μ¼ γm, with
γ≡A=ðAþ1Þ. The Dyson equation eventually reduces
to the following one-body eigenvalue problem [25,37]:

½Ec:m: − k2=ð2μÞ�ψ l;jðkÞ

¼
Z

dk0k02γ3Σ⋆l;jðγk; γk0; γEc:m:;ΓÞψ l;jðk0Þ; ð5Þ

We diagonalize this Schrödinger-like equation in momen-
tum space so that the kinetic energy is treated exactly and
we account for the nonlocality and l, j dependence of
Eq. (4). The phase shifts δðEc:m:Þ are obtained as a function
of the projectile energy for each partial wave, from which
the differential cross section can be calculated. The bound
state solutions of Eq. (5) yields overlap wave functions
between jΨAi and jΨAþ1i [40]. Hence, they provide
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spectroscopic factors and asymptotic normalization coef-
ficients that can be employed for the consistent computa-
tion of nucleon capture and knockout processes.
Results.—We first compare to early NCSM-RGM results

from Ref. [19], where neutron scattering off 16O was
computedwith a NN-only interaction derived from the chiral
next-to-next-to-next-to-leading order force of Ref. [41]
(EM500) and evolved with free space similarity renormal-
ization group (SRG) [42] to a cutoff λ ¼ 2.66 fm−1. This soft
interaction facilitates model space convergence and allows
for amoremeaningful benchmark. These earlyNCSM-RGM
computations did not include virtual excitations of the target
nucleus. For consistence, we performed our SCGF calcu-
lations with the same Hamiltonian but evaluated the phase
shifts using only the static self-energy,Σð∞Þ. The comparison
is shown in the upper panel of Fig. 1, and it is very
satisfactory for the jπ ¼ 1=2þ and 5=2þ partial waves.
For this light nucleus, the discrepancy of about 1 MeV for
the energy of the 3=2þ resonance is also consistent with the
uncertainty in the transformation to the center ofmass system
done in Eq. (5). As we discuss below, doorway excitations of
the target nucleus have a strong impact on the energies of
single particle resonances. To account for this, we performed
new NCSMC calculations that can also include low-lying
excitations of 17O. Extrapolating from model spaces of
NNCSM ¼ 6–10ℏΩ, we find quasiparticle energies of −3.4,
−2.7, and 3.2 MeV for the 5=2þ; 1=2þ bound states and the
3=2þ resonance, respectively. The corresponding results
from the SCGF, including the full Σ⋆ðωÞ self-energy, are

−6.3, −5.5, and 0.5 MeV. These should be expected to be
more bound since SCGF introduces a larger number of 2p1h
doorway configurations. At the same, time the excitation
energies relative to the 17O ground state agree to within
200 keV,which is a satisfactory agreement given the different
many-body truncations of the two approaches.
We performed an analogous comparison for the chiral

next-to-next-to-leading order NNþ 3N interaction of
Ref. [32] (named NNLOsat). For NCSM techniques, 16O
is more difficult to converge because the interaction is
harder and the additional 3N matrix elements limit the
applicability of importance truncation [43]. We performed
our NCSM-RGM calculations at NNCSM ¼ 8ℏΩ and esti-
mated an uncertainty of 1 to 2 MeV for the position of
resonances. The SCGF still allows computations with
Nmax ¼ 13, and we find that phase shifts are well con-
verged up to 15 MeV for this space. This puts into evidence
the advantage of the latter approach to address ab initio
scattering off medium mass isotopes. The NNLOsat bench-
mark is displayed in the lower panel of Fig. 1, and it is
qualitatively similar to the case of the soft EM500-SRG
interaction, with the jπ ¼ 1=2þ and 5=2þ waves agreeing
best. For both Hamiltonians, the largest discrepancies are
for the jπ ¼ 3=2þ and 7=2− resonances, which are more
affected by correlations in the continuum and the different
many-body truncations of the two approaches. NNLOsat
was explicitly constructed to reproduce correct nuclear
saturation properties of medium mass nuclei, including
binding energies and radii. The constraint on radii is crucial
to predicting elastic scattering observables that can be
reasonably compared to the experiment; hence, we will
focus on this Hamiltonian in the following.

FIG. 1. Real part of nuclear phase shifts, δðEc:m:Þ, for neutrons
scattering off 16O as a function of energy obtained from the (upper
panel) EM500-SRG and (lower panel) NNLOsat interactions. The
solid lines are SCGF calculations using only the static part of the
self-energy Σð∞Þ in a Nmax ¼ 13 space. The dashed lines are for
NCSM-RGM, which included only the ground state of 16O
and used a no-core model space up to (top, from Ref. [19])
NNCSM ¼ 18ℏΩ and (bottom) 8ℏΩ.

FIG. 2. Real phase shifts, δðEc:m:Þ, for neutrons scattering off
16O using the complete self-energy, Eq. (2), and NNLOsat in an
oscillator space of frequency ℏΩ ¼ 20 MeV and size Nmax ¼ 13.
(Upper panel) Positive parity, (central panel) l ¼ 1, and (lower
panel) l ¼ 3 partial waves are shown.
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Virtual excitations of the target have the double effect of
increasing the attraction of the real part of the optical
potential (and hence lowering the single particle spectrum)
and of generating a large number of narrow resonances.
This is clearly seen in Fig. 2, which displays the phase
shifts for neutron elastic scattering predicted by the whole
self-energy of Eq. (2). Most of the virtual excitations
responsible for this, especially at low energy, are accessed
by coupling to hundreds of 2p1h configurations for 17O and
appear as clear spikes or “smoothed” oscillations in the
figure. The SCGF-ADC(3) approach has the advantage of
including these states naturally, even at large energies, so it
describes efficiently the relevant physics. Table I compares
the energies of some representative bound and scattering
states to the experiment. The 3=2þ single particle resonance
is computed at 0.91 MeV in the c.m. frame, very close to
the experimental value. The first 1=2− and 3=2− are both
predicted as bound states, although experimentally they are
found inverted with the 3=2− in the continuum. We
calculate a narrow width for the 5=2− and 7=2− resonances,
corresponding to excited states, close to the ones observed
at 3.02 and 3.54 MeV [44]. However, there are other very
narrow f-wave resonances, measured between 1.55 and
2.82 MeV, that our SCGF calculations do not resolve. In
general, we find that NNLOsat predicts the location of
dominant quasiparticle and hole states with an accuracy of
≲1 MeV for this nucleus.

Figure 3 compares the low-energy differential cross
sections originating from Eq. (5) to neutron scattering data
for 16O at 3.286 MeVand 40Ca at 3.2 MeV. The minima are
reproduced well for 16O (and close to the experiment for
40Ca), confirming the correct prediction of density distri-
butions for NNLOsat [32,34,46]. However, the results are
somewhat overestimated and hint at a general lack of
absorption that is usually faced by attempts at computing
the optical potentials ab initio. This is likely related to
missing doorway configurations (3p2h and beyond) that
should be propagated in the denominators of Eq. (2) but are
neglected by state-of-the-art approaches. Note that there are
more than 200 experimentally observed excitations already
between the ground state and the neutron separation
threshold in 41Ca [47], while the SCGF ADC(3) predicts
only about 40 of them. This issue is likely to worsen at
higher energies, where configurations more complex than
2p1h become relevant. We investigated this problem by
computing total nþ 16O elastic cross sections, σðEc:m:Þ,
with only Σð∞Þ, suppressing 50% of the 2p1h and 2h1p
states (evenly across all energies), and by using the
complete ADC(3) self-energy. Figure 4 shows that
σðEc:m:Þ presents oscillations up to about 5 MeV. These
are in part reproduced by theory and are sensible to

TABLE I. Excitation spectrum of 17O with respect to the nþ 16O threshold, as obtained from Eq. (5) and the
NNLOsat interaction and compared to the experiment [45]. Broad resonances in the continuum (most notably, the
5=2þ) are computed at midpoint. The asterisk subscripts indicate higher excited states, above the lowest one, for
each partial wave.

ε (MeV) 5=2þ 1=2þ 1=2− 5=2− 3=2− 3=2þ 5=2þ� 5=2−� 7=2−�
Exp −4.14 −3.27 −1.09 −0.30 0.41 0.94 3.23 3.02 3.54
NNLOsat −5.06 −3.58 −0.15 −1.23 −2.24 0.91 4.57 3.36 3.37

FIG. 3. Differential cross section for neutron elastic scattering
off 16O (40Ca) at 3.286 (3.2) MeV of neutron energy, with
NNLOsat and compared to the empirical data from Refs. [44,50].

FIG. 4. Total elastic cross section for neutron elastic scattering
on 16O form SCGFADC(3) at different incident neutron energies
compared to the experiment in Ref. [51]. The dashed, dotted-
dashed, and solid lines correspond to the sole static self-energy
Σð∞Þ, to retaining 50% of the 2p1h and 2h1p doorway configu-
rations and to the complete Eq. (2), respectively.
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interferences among the projectile and the included 2p1h
configurations. However, the link between the absorption
and the density of the intermediate doorway configurations
becomes clear at higher energies, and it is confirmed by our
calculations [48].
To conclude, we benchmarked optical potentials gen-

erated through SCGF theory to analogous full scale
NCSMC simulations and to data for neutron elastic
scattering at low energy. For both theory approaches, the
correct asymptotic behavior of the scattering wave was
reproduced even if the target wave function and the optical
potentials were expanded in a HO basis. The theory
benchmark, with freezing of virtual excitation of the target,
is very encouraging. The SCGF approach also has the
capability of accounting for a large number of such
intermediate excitations up to very large energies, and it
achieves a promising description of complex resonance
states from first principles. The use of a saturating chiral
interaction allows us to make a meaningful comparison to
the experiment, which was not possible in previous inves-
tigation of this approach. Overall, we found that the most
important features of optical potentials at low energy are
well reproduced, together with key observables related to
elastic scattering.
This Letter also puts into evidence how the lack of

absorption normally observed in ab initio generated optical
potentials is directly linked to the neglect of doorway
configurations beyond 2p1h ones. Thus, addressing this
challenge will be the next fundamental step toward pre-
dictive theories at medium scattering energies. It remains
clear from the present results that obtaining reliable ab initio
optical potentials, directly from the self-energy, is becom-
ing a goal within reach. These findings open a path to
establishing consistent theories of structure and reactions
for medium mass nuclei.

A. I. was supported by the Royal Society and Newton
Fund through the Newton International Fellowship
No. NF150402. This work was supported by the United
Kingdom Science and Technology Facilities Council
(STFC) under Grants No. ST/P005314/1 and No. ST/
L005816/1, and by NSERC Grant No. SAPIN-2016-
00033. TRIUMF receives federal funding via a contribu-
tion agreement with the National Research Council of
Canada. Computations were performed using the DiRAC
Data Intensive service at Leicester (funded by the UK BEIS
via STFC Capital Grants No. ST/K000373/1 and No. ST/
R002363/1 and STFC DiRAC Operations Grant No. ST/
R001014/1) and an INCITE Award on the Titan super-
computer of the Oak Ridge Leadership Computing Facility
(OLCF) at ORNL.

[1] H. Feshbach, Ann. Phys. (N.Y.) 5, 357 (1958).
[2] F. Capuzzi and C. Mahaux, Ann. Phys. (N.Y.) 245, 147

(1996).
[3] L. S. Cederbaum, Ann. Phys. (N.Y.) 291, 169 (2001).

[4] C. Mahaux, P. F. Bortignon, R. A. Broglia, and C. H. Dasso,
Phys. Rep. 120, 1 (1985).

[5] A. Idini, F. Barranco, and E. Vigezzi, Phys. Rev. C 85,
014331 (2012).

[6] A. Idini, G. Potel, F. Barranco, E. Vigezzi, and R. A.
Broglia, Phys. Rev. C 92, 031304(R) (2015).

[7] R. A. Broglia, P. F. Bortignon, F. Barranco, E. Vigezzi, A.
Idini, and G. Potel, Phys. Scr. 91, 063012 (2016).

[8] C. H. Johnson and C. Mahaux, Phys. Rev. C 38, 2589
(1988).

[9] R. J. Charity, L. G. Sobotka, and W. H. Dickhoff, Phys. Rev.
Lett. 97, 162503 (2006).

[10] W. H. Dickhoff, R. J. Charity, and M. H. Mahzoon, J. Phys.
G 44, 033001 (2017).

[11] G. Blanchon, M. Dupuis, H. F. Arellano, and N. Vinh Mau,
Phys. Rev. C 91, 014612 (2015).

[12] M. Vorabbi, P. Finelli, and C. Giusti, Phys. Rev. C 93,
034619 (2016).

[13] M. Gennari, M. Vorabbi, A. Calci, and P. Navrátil, Phys.
Rev. C 97, 034619 (2018).

[14] M. Burrows, C. Elster, S. P. Weppner, K. D. Launey, P.
Maris, A. Nogga, and G. Popa, Phys. Rev. C 99, 044603
(2019).

[15] T. R. Whitehead, Y. Lim, and J. W. Holt, Phys. Rev. C 100,
014601 (2019).

[16] K. Varga, S. C. Pieper, Y. Suzuki, and R. B. Wiringa, Phys.
Rev. C 66, 034611 (2002).

[17] K. M. Nollett, S. C. Pieper, R. B. Wiringa, J. Carlson, and
G.M. Hale, Phys. Rev. Lett. 99, 022502 (2007).

[18] J. E. Lynn, I. Tews, J. Carlson, S. Gandolfi, A. Gezerlis,
K. E. Schmidt, and A. Schwenk, Phys. Rev. Lett. 116,
062501 (2016).

[19] P. Navrátil, R. Roth, and S. Quaglioni, Phys. Rev. C 82,
034609 (2010).

[20] S. Baroni, P. Navrátil, and S. Quaglioni, Phys. Rev. Lett.
110, 022505 (2013).

[21] F. Raimondi, G. Hupin, P. Navrátil, and S. Quaglioni, Phys.
Rev. C 93, 054606 (2016).

[22] G. Hagen and N. Michel, Phys. Rev. C 86, 021602(R)
(2012).

[23] J. Rotureau, P. Danielewicz, G. Hagen, F. M. Nunes, and T.
Papenbrock, Phys. Rev. C 95, 024315 (2017).

[24] J. Rotureau, P. Danielewicz, G. Hagen, G. R. Jansen, and
F. M. Nunes, Phys. Rev. C 98, 044625 (2018).

[25] W. Dickhoff and C. Barbieri, Prog. Part. Nucl. Phys. 52, 377
(2004).
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