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A recent proposal suggests that experimental discrepancies on the lifetime of neutrons can be resolved if
neutrons decay to dark matter. At the same time it has been demonstrated that such a decay mode would
soften the nuclear equation of the state resulting in neutron stars with a maximum mass much below
currently observed ones. In this Letter, we demonstrate that appropriate dark matter-baryon interactions can
accommodate neutron stars with mass above two solar masses. We compare this stabilization mechanism to
one based on dark matter self-interactions, finding that it is less sensitive to the details of the nuclear
equation of state. We present a simple microscopic model realization of this mechanism.

DOI: 10.1103/PhysRevLett.123.091601

Introduction.—A puzzling discrepancy between the neu-
tron lifetime asmeasured in bottle and beamexperiments has
persisted for more than 20 years [1]. In bottle experiments, a
number of neutrons N are cooled down and stored in a
container. At later times the remaining number of neutrons is
counted and fit to a decaying exponential ∝ expð−t=τbottleÞ.
In beam experiments, the rate of protons emitted from a
beam of neutrons is fit to dN=dt ¼ −N=τbeam. The current
world average in the PDG [1] for the neutron lifetime in
bottle experiments [2–6] is τbottle ¼ 879.6� 0.6 s, whereas
the beam experiment measurements [7,8] are significantly
longer with a world average at τbeam ¼ 888.0� 2.0 s. The
discrepancy is currently at the 4σ level.
Calculation of the neutron lifetime requires the nucleon

axial coupling, gA, as input. Both a global fit [9] and a recent
1% lattice-QCD determination [10] give τn ≈ 885 s.
However, if only gA determinations dating from after 2002
are used, the resulting calculated lifetime agrees remarkably
well with τbottle [11]. A resolution involving new physics is
not out of the question, and an exciting proposal by Fornal
and Grinstein [12] recently sparked significant interest in the
subject. They suggested an invisible decay of the neutron into
dark matter (DM) in order to explain the neutron decay
anomaly. Since the beam measurements are only sensitive to
beta decay, one would expect τbeam ¼ τbottle=Brðn → pþ
eþ ν̄eÞ, suggesting that Brðn → pþ eþ ν̄eÞ ≈ 99% with
the remaining 1% branching into DM. Interestingly, the dark

decay of the neutron hypothesis can be tested by visible
decays of unstable nuclei [12]. A systematic analysis by
Pfützner andRiisager shows that 11Be → 10Be and 15C → 14C
are particularly sensitive tests [13], the former because the
only irreducible background, from β-delayed p emission, is
reliably calculated tobe400 times smaller thanobserved [14],
and the latter because there is no irreducible background
and technology to measure minute amounts of 14C is highly
developed. Soon after the proposal in Ref. [12], it was
realized that an invisible decay channel of the neutron would
lead to partial conversion of neutrons to DM inside a neutron
star (NS). In such a case the nuclear equation of state (EOS)
softens so much at high densities that makes it impossible for
a NS to support masses above 2 M⊙ [15–17]. This contra-
dicts current observations setting the maximum NS mass
above ∼2 M⊙.
The authors of Ref. [18] studied the NS stability including

DM self-interactions mediated by dark photons, concluding
that although such interactions provide enough pressure to
support 2 M⊙ NSs, theDMparticle that the neutron decay to
must represent at best only a small fraction of the overall DM
density of theUniverse because annihilations of thisDMtype
to themediators in the earlyUniverse cannot provide the right
DM relic density.Models which induceDM self-interactions
can alleviate tensions between numerical simulations of
collisionless cold DM (CCDM) and astrophysical observa-
tions [19–28]. Simulations including DM self-interactions
suggest that they have the effect of smoothing out cuspy
density profiles, and could solve the problems of CCDM
[29–31]. These simulations prefer a self-interaction cross
section of 0.1 cm2=g≲ σ=m≲ 10 cm2=g. There are, how-
ever, upper bounds on σ=m from a number of sources,
including the preservation of ellipticity of spiral galaxies
[32,33]. The allowed parameter space from these constraints
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nonetheless intersects the range of cross sections which can
resolve the small-scale issues of CCDM, in the range
0.1 cm2=g≲ σ=m≲ 1 cm2=g.
In this Letter, we study repulsive DM-baryon inter-

actions, which allow us to (i) accommodate the decay of
neutrons to DM and explain the neutron decay anomaly,
(ii) produce NSs with mass over 2 M⊙, and (iii) account for
all of the DM relic density. Our solution to the neutron star
stability problem is qualitatively different than those
previously proposed using repulsive DM self-interactions
[18]. Repulsive self-interactions stiffen the equation of state
by raising the DM chemical potential and tuning down the
DM to baryon fraction in equilibrium. Repulsive DM-
baryon interactions can also stabilize the star, not by
stiffening the EOS, but by making it energetically expen-
sive to produce DM particles in a pure baryon medium (and
vice versa). Therefore the cross interactions can impede the
creation of any significant amount of DM inside the NS,
thus maintaining almost pure NSs (without DM present),
despite the fact that free neutrons could decay to DM.
Before we present a specific example of a microscopic

model that can give all this, it is instructive to show how
DM-neutron interactions affect the stability of NSs. We
model the interaction by a vector or scalar boson mediated
Yukawa potential

U ¼ � gχgn
4π

e−mϕr

r
; ð1Þ

where þð−Þ is for vector (scalar) exchange, gχ;n are the
couplings to DM and neutron, respectively, and mϕ is the
mass of the mediator. Couplings with equal (opposite) sign
result in repulsion (attraction) for vectors and vice versa for
scalars. DM self-interactions have a similar potential with
coupling g2χ in place of gχgn. None of the models proposed
to date that explain the neutron decay anomaly lead to a
repulsive cross interaction, with the exception off Model 1
of Ref. [12] that has a photon in the final state (furthermore,
the UCNA collaboration has excluded with 97% CL the
visible decay n → χ þ γ for 937.900 MeV < mχ <
938.783 MeV [34]). However it couples to the neutron
via a magnetic dipole interaction, which can be attractive or
repulsive depending on its orientation. We expect that
neutrons will occupy equally spin up and down states, and
therefore such interactions will average to zero; hence they
are not suitable in our case.
Equation of state.—The energy density in a NS with DM

and the above interaction is

εðnn; nχÞ ¼ εnucðnnÞ þ εχðnχÞ þ
nχnn
z2

; ð2Þ

where nn;χ are the neutron and DM number densities
respectively, εnuc is the energy density due to nuclear
interactions, εχ is the energy density of DM, and the last

term is the Yukawa energy density due to n − χ interactions
in the mean field approximation where z≡mϕ=

ffiffiffiffiffiffiffiffiffiffiffiffijgχgnj
p

.
The last term in the energy density is valid as long as the
star is large compared to the Yukawa screening length, i.e.,
R ≫ 1=mϕ. Notice that the cross interaction depends
simply on one parameter z. Long range forces are severely
constrained and therefore we are going to assume that the
mediator has a mass. The DM energy density including DM
self-interactions is

εχ ¼
m4

χ

8π2
½x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
ð1þ 2x2Þ− log ðxþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
Þ� � n2χ

2z02
;

x¼ ð3π2nχÞ1=3
mχ

; ð3Þ

where z0 ≡mϕ=gχ and it is understood that the last term
corresponds to DM self-interactions with þ (−) sign being
repulsive (attractive). The free energy cost at zero temper-
ature associated to creating a DM particle at fixed total
number density nF ¼ nn þ nχ is just the change in internal
energy, i.e.,

ΔE≡ ∂εðnF − nχ ; nχÞ
∂nχ ¼ μχðnχÞ − μnucðnnÞ þ

nF − 2nχ
z2

;

ð4Þ

where μi (i ¼ χ, nuc) represent the chemical potentials of
DM and neutrons, respectively. A chemical equilibrium
exists when ΔE ¼ 0. In a pure neutron environment where
no DM is present the energy cost is

ΔE0 ¼ ΔEjnχ¼0 ¼ mχ − μnucðnFÞ þ
nF
z2

: ð5Þ

Notice, that the nuclear chemical potential μnuc > mn and
mn > mχ for the dark decay to take place. Therefore, in the
absence of DM self-interactions, weak DM-neutron inter-
actions (large z) makes neutron conversion thermodynami-
cally favored [15–17], whereas stronger DM-neutron cross
interactions (small z) lead to a large energy cost for
converting neutrons to DM that makes it energetically
favored to have zero DM density. For the nuclear EOS, we
have chosen the SLy-4 [35] which is a nuclear EOS without
a quark core and the power law EOS V3π þ VR [36] (which
was also used in Ref. [18]). Both EOSs we are using can in
isolation support NSs with a mass larger than 2M⊙, and
hence are consistent with observational data. As depicted in
Fig. 1, for a given strength of DM-neutron cross interaction
(i.e., for a given z), there are three possibilities.
(i) ΔE0 > 0; i.e., the system is in a pure neutron phase
simply because there is an energy cost to create DM. As can
be seen by inspection of Eq. (5), by strengthening cross
interactions (i.e., by reducing z), the system can always
enter theΔE0 > 0 regime. This is also shown graphically in
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Fig. 1, where for a given total density nF, there is always a z
below which ΔE0 > 0 and no DM particles are present.
(ii)ΔE0 < 0 andΔE ¼ 0 for some value of nχ < nF. In this
case ΔE0 < 0 means that it is energetically favored to
convert some of the neutrons to DM. The condition
ΔE ¼ 0 ensures chemical equilibrium and by enforcing
this condition using Eq. (4), one can determine the amount
of DM present (i.e., nχ). (iii) The last regime satisfies
ΔE < 0 for any nχ, whichmeans that effectively all neutrons
have converted to DM particles. We measure number
densities in units of the nuclear density n0 ¼ 0.16 fm−3.
Wewill mainly focus on DM-baryon cross interaction as the
mechanism allowing NSs to reach 2M⊙. However, we will
also comment on the case where DM self-interactions
provide the needed support for heavy NSs.
In order to estimate how heavy NSs can be, we use Eq. (2)

with our two choices of nuclear EOS [35,36]. The pressure is
derived from the relation P ¼ n2Fdðε=nFÞ=dnF. In the limit
of zero temperature (an excellent approximation for NSs),
knowing the pressure and the energy density as a function
of nχ , nnuc and the parameter z, allows us to solve the re-
lativistic hydrostatic equilibrium described by the Tolmann-
Oppenheimer-Volkoff equation. By scanning the central
fermion density, we find the maximum mass for the NS.
Recall that nχ is uniquely fixed from the chemical equilib-
rium conditionΔE ¼ 0 of Eq. (4). IfΔE0 > 0, we obviously
have nχ ¼ 0. Therefore NSs can be as heavy as 2M⊙ based
on the fact that no DM is present to soften the EOS
(corresponding to a central density of 6n0 using the
SLy-4 EOS shown in Fig. 1). For our choices of EOS this
corresponds to z≲ 100 MeV.No stable equilibriumexists if

the central density is in the pure DM phase, and the heaviest
stable configuration in the mixed phase is around 1.5M⊙.
A microscopic model.—We move on to suggest a

concrete model satisfying the two basic assumptions,
i.e., to provide the mechanism for the neutron decay to
DM and provide repulsive cross interactions with
z≲ 100 MeV. The potential in Eq. (1) can arise from
scalar or vector exchange. In the former case the repulsive
force requires opposite sign charges of χ and n, while in the
latter same sign charges are required. In this example, we
choose a scalar mediator, and realize the model as a
modification of Model 2 of Ref. [12]. It requires four
particles beyond the Standard Model (SM): a scalar Φ ¼
ð3; 1Þ−1=3 (color triplet, weak singlet, hypercharge −1=3),
two Dirac fermions χ̃ and χ (the DM particle), and a scalar
ϕ (all SM singlets). The neutron decay to χ þ ϕ is mediated
by the very heavyΦ and the fermion χ̃ with a mass that may
be heavier than the neutron, through interactions given by

L ¼ λqϵ
ijkucLidRjΦk þ λχΦ�i ¯̃χdRi þ λϕ ¯̃χχϕ

þ μH†Hϕþ gχ χ̄χϕþ H:c:; ð6Þ
where dR and uR are the standard model singlet quarks of
charge −1=3 and 2=3. The dark neutron decay takes place
with interactions in the first line of the Lagrangian. The
baryon numbers for the particlesΦ, χ̃, χ and ϕ are chosen to
be−2=3, 1, 1, and 0, respectively. The model requires a fine
tuning if one insists on mϕ ≪ mχ ; this is also the case in
the original Model 2 of Ref. [12]. One can envision
alternative scenarios where, e.g., the mediator might be a
Goldstone boson with a mass protected from big correc-
tions. However this goes beyond the scope of this Letter,
since we intend to provide the simplest possibility here.
Compared to Model 2 in Ref. [12] the baryon numbers of χ
and ϕ are exchanged which allows additional terms in the
Lagrangian, in particular a Higgs portal and a vertex with χ
and ϕ. At low energies, the interaction through the Higgs
portal induces an effective interaction with the neutron
gnϕn̄n where

gn ¼
μσN
m2

h

; ð7Þ

where mh¼125GeV is the Higgs mass and
σN≡P

allqhnjmqq̄qjni≈280MeV, using σN¼1=9ð2mnþ
7σudsNÞ [37] and σudsN≡P

q¼u;d;shnjmqq̄qjni¼86.1ð20.1Þ
from Ref. [38]. The model can incorporate the neutron
decay to DM and DM relic density just as described in
Ref. [12]. The repulsive DM-neutron interactions require
gngχ<0. To get the right interaction strength z≲ 100 MeV,
we must consider constraints on the light mediator ϕ. First
we consider constraints on the DM self-interaction cou-
pling gχ , which allows a DM scattering cross section per
mass σ=m≲ 1–10 cm2=g, with the relevant momentum
transfer weighted cross section given by [39]

FIG. 1. The phase diagram using Eq. (4) and the SLy-4 EOS
[35] assuming mn −mχ ¼ 1 MeV. In the white region there is an
energy cost associated to creating any DM particles and pure
neutron matter is preferred. In the light blue region, a chemical
equilibrium exists with both neutron matter and DM. In the dark
blue region, pure DM is thermodynamically preferred. For
z≲ 100 MeV, fermion densities < 6n0 favor neutron matter
and therefore do not affect NSs with mass smaller than 2M⊙.
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σT ¼ 4π

m2
ϕ

β2 log ð1þ β−1Þ; ð8Þ

with β ¼ 2αmϕ=ðmχv2Þ and v ∼ 30 km= sec for typical
dwarf galaxies (the expression being valid for β < 0.1 and
mχv=mϕ ≫ 1). Taking the DM mass to be ∼mn, we get
gχ ≲ 4 × 10−4 with a mild dependence on the mediator
mass mϕ. For a gχ value slightly smaller than 4 × 10−4, the
DM self-interactions fall in the range that alleviate the
problems of CCDM. At the same time, the constraints on
light particles coupling to the neutron allow us to find
parameter space satisfying our NS stability condition. We
can for example choose mϕ ∼ 0.1 eV and gn ∼ −10−14,
corresponding to μ ∼ −0.6 eV. Such a value of gn is
allowed by the strict constraints set on arguments of rapid
red giant star cooling, (see, e.g., Fig. 3 in Ref. [40]). These
values correspond to z ∼ 50 MeV, which is below the value
100 MeV that we found sufficient to stabilize heavy
neutron stars. We should stress here that close to the
surface of the NS where nF → 0, one cannot exclude the
presence of DM, simply because at low densities μn ≃mn
while μχ ≃mχ . Since mn > mχ , close to the surface there
could be neutrons converting to DM. This can be seen at
low densities in our Fig. 1. However, this does not change
our conclusions. First, a small amount of DM at low
densities close to the surface does not change the overall
stability of the star which depends on the EOS at the center.
Second, at the NS crust there are heavy nuclei, and the
EOSs we have been using are not accurate.
The light mediator ϕ could potentially create problems

during BBN and CMB since it could contribute to the
effective number of relativistic degrees of freedom. We
require that ϕ decays before the start of BBN in order not to
disturb the abundances of light elements. This can be
achieved by decaying to active or sterile neutrinos as, e.g.,
in Ref. [41]. In the case of sterile neutrinos, the decay can
take place via a term yNϕNcN where N is a light sterile
neutrino. The requirement that ϕ decays before BBN leads
to the condition yN > 2 × 10−7ð0.1 eV=mϕÞ1=2. Alter-
natively, ϕ can decay to active neutrinos via an effective
Weinberg operator of the form ϕðLHÞ2=Λ2 as long as the
scale Λ≲ 6 × 106

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mϕ=0.1 eV

p
GeV. This induces an

effective coupling between ϕ and active neutrinos of the
order or larger than v2EW=Λ2 ¼ 1.7 × 10−9. Neutrino dump
experiments can in principle set constraints on couplings of
neutrinos to other light particles (see, e.g., Ref. [42] for a
review).
Self-interactions.—A qualitatively different way of

accommodating dark neutron decays in NSs with masses
above 2 M⊙ is via DM self-interactions. In the case of
repulsive DM-baryon interactions, the existence of DM
inside the star is disfavored. In the case of DM self-
interactions, DM is present but has a relatively stiff EOS.
As was confirmed also in Ref. [18], in order to support

heavy NSs via DM self-interactions, a light vector mediator
is needed. If DM is produced thermally, the relic density
must be determined by the DM annihilations to these
mediators. However, the mediators themselves have to
decay to SM particles before the BBN epoch. This sets a
minimum coupling between the mediator and SM, which is
sufficient to deplete most of the DM relic density. Therefore
in such a setup, the DM particle that the neutron decays to
cannot account for the whole relic density of DM. This
outcome can however be avoided if DM is created with a
matter-antimatter asymmetry. The t-channel annihilation
rate of DM fermions into light vector mediators is σannv ¼
g4χ=ð16πm2

χÞð1 −m2
ϕ=m

2
χÞ1=2 [43], which can be much

larger than the typical weak scale annihilation rate for
couplings larger than gχ ∼ 2 × 10−2. In this case the whole
population of anti-DM is annihilated. Moreover, it has been
argued that a primordial DM asymmetry can induce low-
scale baryogenesis through resonant dark matter–neutron
oscillations in the early universe [44]. Furthermore, asym-
metric DM immediately avoids the bounds set in large
volume Cerenkov detectors from the absence of anti-DM
annihilation with nuclei [45]. For a coupling gχ > 2 × 10−2,
the self-interaction cross section becomes σ=m≲ 10 cm2=g
for z0 ≳ 36 MeV, corresponding to a mediator mass larger
than mϕ ≳ 0.7 MeV. If the mediator mass furthermore
exceeds 2me the decay channel to eþe− opens up and it
is easy to accommodate the particle’s decay before BBN
(see Fig. 2 of Ref. [18]).Therefore as long as these
constraints are satisfied and gχ is much larger than
2 × 10−2, asymmetric DMmodels would be able to account
for the whole DM relic density. However, as can be seen
from Fig. 2, in order to have NSs with mass over 2 M⊙,
z0 ¼ mϕ=gχ must be smaller than a given value. For example
the SLy-4 EOS requires z0 ≲ 25 MeV, whereas V3π þ VR

FIG. 2. The maximum NS mass with DM self-interactions as a
function of interaction parameter z0. The figure shows two
different EOS; SLy-4 is relatively soft and M ≥ 2M⊙ requires
z0 ≲ 25 MeV, whereas V3π þ VR requires that z0 ≲ 45 MeV.
Both cases assume that the mass of DM is one MeV below that
of the neutron.
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requires z0 ≲ 45 MeV. Given the conditions we stated
above, i.e., having a gχ ≫ 2 × 10−2 and satisfying the
DM self-interactions constraints (z0 ≳ 36 MeV), one can
see that 2M⊙ NSs with allowed DM self-interactions and a
SLy-4 EOS cannot be achieved, whereas it will be margin-
ally possible for V3π þ VR. For an ultrahard EOS where z0
can even be as large as 60 MeV [18], DM self-interactions
can accommodate easier the maximum mass of 2M⊙. The
DM-baryon cross interactions presented here provide a
appealing solution to the problem because there is neither
a need for strong self-interactions nor an asymmetric DM
production mechanism.
Conclusions.—In case where the neutron decay discrep-

ancies are due to partial neutron decays to DM, we have
shown that a repulsive interaction between DM and
neutrons can disfavor the conversion of neutrons to DM
inside NSs, thus allowing NSs to be heavier than 2M⊙, as
supported by observations. We propose a microscopic
model that can accommodate the DM-baryon cross inter-
actions relying on a light scalar and neutron interactions via
a Higgs portal. This is qualitatively different from previous
proposals because in our scenario, it is the absence of DM
that saves heavy NS from collapsing.
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