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We propose helioseismology as a new, precision probe of fifth forces at astrophysical scales, and apply it
on the most general scalar-tensor theories for dark energy, known as degenerate higher-order scalar-tensor
theories. We explain how the effect of the fifth force on the solar interior leaves an observable imprint on the
acoustic oscillations, and under certain assumptions we numerically compute the nonradial pulsation
eigenfrequencies within modified gravity. We illustrate its constraining power by showing that helioseismic
observations have the potential to improve constraints on the strength of the fifth force by more than 2
orders of magnitude, as −1.8 × 10−3 ≤ Y ≤ 1.2 × 10−3 (at 2σ). This in turn would suggest constraints of
similar order for the theory’s free functions around a cosmological background (αH , β1).
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Introduction.—General relativity (GR) has been success-
ful at describing observations at a vast range of scales, but
its currently being challenged by crucial cosmological and
astrophysical observations: the pressing questions of dark
matter and dark energy suggest the possibility of new
degrees of freedom and forces, yet to be discovered.
The most popular extensions of GR are theories intro-

ducing a new dynamical scalar field coupled to spacetime.
Intense efforts over the last years led to the remarkable
construction of the most general, covariant theory describ-
ing the dynamics of a scalar field kinetically interacting
with gravity, collectively labeled as DHOST scalar-tensor
theories [1–6]. They correspond to nontrivial generaliza-
tions of the popular Horndeski theory of gravity [7],
incorporating the archetypal Brans–Dicke theory as a
subcase. Their cosmological and astrophysical phenom-
enology is rich, with their most notable prediction being the
change in the propagation speed of gravitational waves as
compared to GR. The recent measurement of the speed of
tensors [8,9] placed the most stringent constraints on their
theory space so far, ruling out a significant part of the
allowed kinetic scalar-tensor interactions [10–15].
An intriguing feature of the remaining nontrivial scalar-

metric interactions is the prediction of a fifth-force effect
within compact objects as (Technically, this is due to the
breaking of the Vainshtein screening mechanism in the star,
which would otherwise prevent sizable fifth-force effects.)
[14,16,17],

∇2Φ ¼ 4πGρþ G
Y
4
∇2

�
dm
dr

�
; ð1Þ

with Φ the gravitational potential, mðrÞ the mass enclosed
within radius r, and Y the coupling strength of the new
force. A Y > 0 (Y < 0) tends to weaken (strengthen)
gravity, since dρ=dr < 0 in the stellar interior, while
Newtonian gravity is recovered outside the star
(dM=dr → 0). In a cosmological context, Y relates to
the parameters associated with the large-scale structure
dynamics of general scalar-tensor theories labeled as αH
and β1 [14]. Therefore, constraints on Y have direct
consequences for gravity at large scales and dark energy
modeling. Currently, the upper and lower bound from
astrophysics comes from white dwarfs as Y > −0.48 [18]
and Y < 0.18 [19], respectively (see also Refs. [20,21]).
Our goal is to explore helioseismology as a high-

precision test of fifth forces at local scales (For detailed
expositions on helioseismology, see Refs. [22–25].), focus-
ing on theory (1). The solar eigenspectrum traces the finest
details of the solar interior, which in combination with the
accuracy of the observed frequencies (∼1 in 105), provides
a powerful probe of the underlying physics. Wewill explain
how the fifth force leaves an observable imprint on the solar
eigenspectrum through the subtle deformations of the solar
sound speed profile, and employing helioseismic simula-
tions we will illustrate the power of helioseismological
constraints in this regard.
Helioseismology as a powerful probe of gravity.—For an

intuitive grasp of the way helioseismology traces the
interior solar physics, let us consider a key result of the
asymptotic (WKB) theory of stellar pulsations, describing
the characteristic frequency of an acoustic wave associated
to the travel time from the stellar center to the surface (see,
e.g., Refs. [22,23]),
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R

0

dr
cs
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; ð2Þ

with R the surface radius and cs ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi∂P=∂ρp

the interior
speed of sound, while P and ρ stand for the pressure and
density profiles. Clearly, solar pulsations probe not only
global properties of the star, but also the structure of its
interior medium through the shape of the sound speed.
Within a helioseismic inversion context, this discrepancy is
translated to corrections on physical interior profiles and
microphysics assumptions, which can be elegantly formu-
lated as a variational principle (see, e.g., Refs. [25,26]).
Stellar nonradial adiabatic pulsations correspond to

small departures from the spherically symmetric equilib-
rium state, described by a system of fourth-order differ-
ential equations for the displacement vector, Lagrangian
pressure, and Eulerian gravitational potential field pertur-
bations. Defining δX ¼ fδr; δP; δΦ; dδΦ=drg (We con-
sider δP and δΦ as a Lagrangian and Eulerian perturbation,
respectively.), we write L½PðrÞ; csðrÞ; δX� ¼ 0, with L a
linear differential operator [24]. The eigenspectrum is
computed requiring regularity at the center, and that the
pressure perturbation vanishes at the surface (free-boundary
condition [24]). In a spherical harmonic basis, modes with
l ≠ 0 (l ¼ 0) correspond to nonradial (radial) ones, while
the overtone n counts the number of radial nodes. Solutions
are standing waves formed in the cavity defined by an
interior turning point, rt, and an external turning point. The
interior turning point shifts out to the surface for the higher-
degree acoustic modes.
Modified gravity.—The modified Poisson equation (1)

implies a new hydrostatic equilibrium as

dP
dr

¼ −
GMðrÞ

r2
ρðrÞ − GY

4

d2MðrÞ
dr2

ρðrÞ; ð3Þ

which in turn implies a new pulsation spectrum due to the
modified equilibrium structure of the star. Figure 1 (left)
shows the fraction change in cs, Δc2s=c2s , under the theory
(1), based on a polytrope. Each region of the star is
impacted differently, with the effect escalated at two
regions: the center, and an interior point (r ∼ 0.3R⊙).
The effect becomes stronger with jYj, while a weakening
(enhancement) of gravity tends to shift the interior
peak towards (away from) the center. In turn, the modified
sound-speed profile impacts on the predicted acoustic
eigenspectrum. The right of Fig. 1 shows the scaling of
eigenfrequencies with Y, numerically computed according
to the procedure to be explained later. Frequencies
become smaller (larger) for weaker (stronger) gravity, as
qualitatively expected considering Eq. (2) in combination
with the response of cs to the fifth force. The effect of Y
becomes more pronounced for smaller degrees l (at fixed
n), as reflected by the larger slope, as modes with larger
degrees probe outer parts of the star, where Δc2s=c2s is
declining.
Cowling approximation.—A highly useful approxima-

tion widely utilized in asteroseismological studies is the
Cowling approximation [28], which accounts to neglecting
the Eulerian perturbation of the gravitational potential δΦ
for sufficiently large degrees l ≫ 1, due to its overall
suppression by the large factor ∼ð1=ð2lþ 1ÞÞ. Therefore,
the backreaction of gravity to the density perturbation is not
accounted for, and the information about gravity enters
implicitly through the background configuration. Since the
fifth force acts as a perturbative correction to the Newtonian
term, for the perturbed potential, δΦ ¼ δΦN þ δΦMG, this
translates to jδΦMGj ≪ jδΦN j. We will therefore apply the
approximation to the full potential, expected to hold except
for possible singular, unphysical configurations. This will
allow for an insightful understanding of the problem
without loss of accuracy—a study of the full nonradial

FIG. 1. Left: Fractional difference of the solar sound speed between Newtonian and modified gravity for the indicative values of the
fifth-force coupling Y ¼ f�7 × 10−2;�3 × 10−2;�8 × 10−3g, based on the polytrope. Continuous (dashed) curves correspond to

weaker (stronger) gravity with Y > 0 (Y < 0). The typical range of turning points of the modes considered are shown with rðminÞ
t ¼

0.309R⊙ and rðmaxÞ
t ¼ 0.676R⊙, corresponding to l ¼ 5 and l ¼ 35 at n ¼ 10. Right: Scaling of polytropic frequencies with Y at fixed

overtone n ¼ 10. An order 10% weakening or strengthening of gravity (jYj ∼ 0.1) induces a ∼0.1% change in the frequencies. The inset
shows the dependence of ∂f=∂Y on overtone and degree [27]. Larger degrees probe outer solar regions where the fifth-force effect
decreases, leading to a decreasing j∂f=∂Yj.
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oscillation equations in modified gravity goes beyond our
current scope.
Modeling and computation of the pulsation

frequencies.—Eigenspectrum computation.—We use the
state-of-the-art oscillation suite GYRE [29], a modular
code combining advanced shooting or integration schemes
to accurately solve the boundary value problem of the
pulsation equations on a spatial grid. For the outer
boundary condition, we impose that the pressure variation
vanishes at r ¼ R⊙ (δP ¼ 0). For a detailed description of
the equations see Refs. [24,29,30].
Data set.—We will utilize the helioseismic data of

the Global Oscillation Network Group (GONG) [31],
with measurements of solar eigenfrequencies between
l ¼ 0–120, at the accuracy of 1 part in 104.
Solar modeling and eigenspectrum.—The interior mod-

eling of the star goes hand in hand with the predicted
eigenspectrum. In this regard, we first use the code MESA

[32–34] (We refer to the Supplemental Material for a brief
description of the input physics [35–48].) to produce an
evolved model of the present Sun assuming standard gravity.
We evolve a 1 M⊙ star from its zero-age main sequence,
calibrated so that for the solar radius R=R⊙ ∼ 10−4, lumi-
nosity L=L⊙ ∼ 10−3, convective radius Rcz=Rcz

⊙ ∼ 10−1 and
rms sound speed jcrmss − crmss⊙ j ∼ 10−4, after tuning the
element abundances, mixing length or overshooting param-
eters, and choosing the Krishna Swamy atmospheric model.
We proceed computing the acoustic eigenspectrum based

on the evolutionary model (Y ¼ 0) with GYRE, consider-
ing 5 ≤ l ≤ 35, and scanning for frequencies up to the
n ∼ 40th overtone. The choice of l ≥ 5 is for consistency
with the Cowling approximation. The numerical compu-
tation reveals that agreement between predicted and
observed frequencies is at the 0.1% level [49].
Modified gravity.—Aiming at the best balance between

simplicity and accuracy, we proceed in two steps: First, we
compute the eigenspectrum in modified gravity using as
our proxy a polytropic equation of state. The polytrope
inevitably omits for a variety of microphysics—this offset
is then compensated for at the level of the eigenfrequencies
in an effective manner, using the results of our reference
evolutionary model at standard gravity (Y ¼ 0).
For the polytropic index, we fix npol ¼ 3.069, which we

find to provide the best-fit to the density and pressure
profiles of the evolutionary model, so that consistency
between both descriptions is ensured. We first construct a
set of polytropic models based on Eq. (3) for −10−1 ≤ jYj ≤
10−1 and step size δY ¼ 0.2 × 10x, x ∈ f−6;…;−1g, and
proceed solving the pulsation equations with GYRE on a
spatial grid of∼7 × 104 points and 5 ≤ l ≤ 35. The resulting
dependence of frequencies on Y is shown in Fig. 1.
Comparison between the polytropic (at Y ¼ 0) and

evolutionary-model frequencies suggests they disagree
by 17.5%–21.5%. We compensate for this offset effec-
tively, through a correction term δf, which accounts for all

corrections from a more accurate accounting of the micro-
physics as

ftheoryðn; l;YÞ ¼ fpol:ðn; l;YÞ þ δfðn; l;YÞ: ð4Þ

ftheory denotes the predicted and sufficiently accurate
frequency, while the polytropic fpol: is constructed with
npol ¼ 3.068. Since the fifth force is a perturbative correc-
tion to the Newtonian term, we can estimate δfðn; l;YÞ
through an expansion around Y ¼ 0 as δf ≃ δfð0Þ þ δfð1Þ≡
δfð0Þ þ f½∂δfðYÞ�=∂YgjY¼0Y. The term δfð0Þ accounts for
the neglected microphysics of the polytrope at Y ¼ 0,
while δfð1Þ measures their response to the fifth force.
Therefore, for Y ¼ 0, ftheory identifies with the frequencies
computed with the evolutionary model, allowing us to
explicitly extract the zeroth-order correction as δfð0Þ ¼
ftheory − fpol:ðY ¼ 0Þ.
Now, it is straightforward to see that the linear correction

δfð1Þ can be written in the suggestive form

δfð1Þ ≡ f0pol:ξY; ξ≡
�
f0pol: − f0theory

f0pol:

�
Y¼0

; ð5Þ

with derivatives evaluated at Y ¼ 0, gradients depending on
(n, l), and ∂f=∂Y ≡ f0. In the absence of evolutionary
simulations in modified gravity, f0theory is unknown, and we
will instead treat ξ as a nuisance parameter. Notice that,
since gradients depend on ðl; nÞ, Eq. (5) accounts for the
appropriate weight for each mode through f0pol:, the value of
which is known from our numerical simulations. Our goal
now is to derive an upper bound for jξj that will guide its
marginalization range later on. For a numerical estimate,
we consider the approximate result from the asymptotic
(WKB) analysis for sufficiently low-degree modes (see,
e.g., Refs. [22,23]),

f ¼
�
nþ l

2
þ α

�
f̄; ð6Þ

with f̄ ≡ facoustic given in Eq. (2), and α a correction due to
the phase shift as the wave is reflected at the outer
boundary. It is α ≃ npol=2 for a purely polytropic star,
and α ≃ 0.646 for perfectly conducting atmospheres (see,
e.g., Refs. [22,23] for details).
To estimate f0theoryðYÞ in Eq. (5), we first differentiate (6)

with respect to Y. In turn, this requires an estimate of
the corrected, fundamental frequency f̄theoryðYÞ. To com-
pute it, we use Eq. (2) under a similar improvement to
Eq. (4), but at the level of the sound speed as csðYÞ¼
cpol:s ðYÞþδcsðYÞ≃cpol:s ðYÞþδcð0Þs , truncated at zeroth order.
(It is straightforward to see that, expanding the integrand in
Eq. (2) with respect to Y, the linear correction δcð1Þs ðYÞ is
suppressed by at least one order of magnitude compared
to the zeroth-order term.) The polytropic piece acts as a
proxy to the fifth-force’s effect, while the Y-independent
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correction δcð0Þs is extracted comparing the sound speed
profile of our evolutionary model with the polytrope (at
Y ¼ 0). Evaluating Eq. (2) under this approximation, and
differentiating the result leads to ∂f̄theory=∂Y ≃ −3.425. For
the pure polytrope (npol ¼ 3.069), it is easy to see that
∂f̄pol:=∂Y ≃ −3.053. We also use αpol: ¼ npol=2 and
αtheory ¼ 0.646, respectively. Now, our numerical solutions
for f0pol: show that its magnitude increases with increasing
degree at fixed overtone, approximately according to
Eq. (6) up to l ∼ 10, and starts decreasing with l beyond
that point (see right of Fig. 1). Therefore, using Eq. (6) and
the previous estimates, an upper bound is found substitut-
ing the highest overtone in the particular subsample of
modes we use for our statistical analysis (see next section),
n ¼ 11, for which lcritical ¼ 9, yielding jξjupper ≃ 5.2%. We
allowed for both positive and negative values in ξ for
consistency, given that its exact value is unknown in our
analysis.
The constraining power of helioseismology on the fifth-

force coupling and its cosmological implications.—
Typically, stellar-evolutionary models cannot accurately
enough predict the star’s eigenspectrum. Within helio-
seismic inversions, statistically significant differences
between theory and observations are translated to back-
ground-modeling corrections. In this context, disentangling
the subtle effects of the fifth force from such systematics
proves a challenging task. A helioseismic-inversion analy-
sis in modified gravity goes beyond the scope of this work
—instead, to minimize background-modeling systematics,
we select those frequencies differing by no more than 1σobs,
i.e., jftheory − fobsj < σobs, when computed with the evolu-
tionary model (at Y ¼ 0). We find this is satisfied in total by
19 modes ranging between l ¼ 10–35 and n ¼ 6–11 [27].
For all modes of this subset we construct a combined
likelihood as LðY; ξÞ ∝ exp ð−χ2=2Þ, with χ2ðY; ξ; l; nÞ≡P

l;n½ftheoryðY; ξ; l; nÞ − fobservedðl; nÞ�2=σ2obs, and ftheory
computed according to the previous section.
Using jξjupper ≃ 5.2%, we first marginalize L over

ξ ∈ ½−0.052; 0.052�, to find that, −1.71 × 10−3 ≤ Y ≤
1.15 × 10−3 (2σ). Had we naively assumed the fractional
error on the frequency gradients is similar to that for the
frequencies between the polytropic and MESA model
(∼17.5–21.5%), we are led to the extreme case of
jξj ≃ 22. Marginalizing over jξj ≤ 22 we find −1.79 ×
10−3 ≤ Y ≤ 1.2 × 10−3 (2σ). Clearly, the marginalization
range has no practical effect, and using the latter
conservative choice for jξj, we can quote at 2σ

−1.8 × 10−3 ≤ Y ≤ 1.2 × 10−3: ð7Þ
This suggests an improvement by more than 2 orders of
magnitude on the previous lower (Y > −0.48 [18]) and
upper (Y < 0.14 [19]) bounds from astrophysics, and adds
to intense previous efforts to constrain Y [18–20,50–56].
The result (7) should be understood within the context of
our data-selection criterion, relying on the modes best

described by our reference model. We find that inclusion of
a broader set of modes causes tension with Newtonian
gravity at 2σ (This is due to a shift in the total likelihood’s
central value, and not a change in its spread.), until the point
when individual likelihoods are in tension with each other
too—the latter tension prevents the extraction of a global
constraint on Y from all data points, and indicates the need
for improved modeling. A detailed helioseismic-inversion
treatment in the future would allow for a consistent analysis
of all modes, and the distinction between genuine fifth-
force effects from background-modeling artifacts [27].
Therefore, Eq. (7) illustrates the constraining power of
our approach, and should be regarded as a first, order-of-
magnitude estimate of what would be a thorough helio-
seismic analysis.
The coupling Y relates to effective theory functions

of the original scalar-tensor theory as Ref. [14], Y ¼
−ð2ðαH þ β1Þ2=αH þ 2β1Þ. β1ðtÞ parametrizes the contri-
bution of higher-order scalar-metric kinetic operators in the
action, while αHðtÞ quantifies the amount of kinetic
mixing between the scalar and matter. Their current
constraint is due to the Hulse-Taylor pulsar combined with
white-dwarf observations, −8 × 10−2 ≤ β1 ≤ 2 × 10−2 and
−5 × 10−2 ≤ αH ≤ 2.6 × 10−1 [14], while cosmological
probes suggestOð1Þ constraints [57]. The result (7) implies
for both parameters at 2σ as −1.9 × 10−3 ≤ β1 ≤ 5.2 ×
10−3 and −2.4 × 10−3 ≤ αH ≤ 3.3 × 10−3. The implica-
tions of Eq. (7) on the plane of ðβ1; αHÞ is shown in Fig. 2,
and it is to be compared with the similar figure of Ref. [14].
Summary.—We proposed helioseismology as a high-

precision test for the most general scalar-tensor theories
(DHOST). We showed how the subtle fifth-force effect
leaves a characteristic observable imprint on solar pulsa-
tions, and demonstrated the constraining power of our
approach for the fifth-force coupling strength.
This is the first step towards a complete treatment of

helioseismology in modified gravity, begging for further
studies in the search of new exciting effects, and the

FIG. 2. The implications of Eq. (7) on the cosmological-
parameter space ðβ1; αHÞ. The region between the black-
continuous boundaries corresponds to the constraint of Ref. [14],
while green-dashed ellipses to the predicted helioseismological
bound (7).
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confirmation of our results with a fully consistent approach.
In particular, going beyond the Cowling approximation and
the inclusion of helioseismic corrections will allow us to
probe a broad part of the eigenspectrum. In turn, this calls
for the construction of the modified nonlinear pulsations
equations, along with accurate solar models in the presence
of the fifth force. We leave these issues for future work.
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