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Many-body localization is shown to suppress the imaginary parts of complex eigenenergies for general
non-Hermitian Hamiltonians having time-reversal symmetry. We demonstrate that a real-complex
transition, which we conjecture occurs upon many-body localization, profoundly affects the dynamical
stability of non-Hermitian interacting systems with asymmetric hopping that respects time-reversal
symmetry. Moreover, the real-complex transition is shown to be absent in non-Hermitian many-body
systems with gain and/or loss that breaks time-reversal symmetry, even though the many-body localization
transition still persists.
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Introduction.—The reality of the eigenenergies of a
Hamiltonian is closely related to the dynamical stability.
Even without Hermiticity, certain classes of non-Hermitian
Hamiltonians have real eigenenergies. A real-complex tran-
sition of eigenenergies of non-Hermitian systems featuring
parity-time (PT) symmetry [1–15] has attracted growing
interest motivated by experimental realization of such
systems [16–34]. A real-complex transition also occurs in
non-Hermitian systems with disorder and time-reversal
symmetry (TRS). Hatano and Nelson [35–38] investigated
a single-particle disorderedmodelwith asymmetric hopping,
and they found that real eigenenergies become complex
when localization is destroyed by strong non-Hermiticity.
However, it is nontrivial whether a real-complex transition
due to localization and TRS in noninteracting models
[39–45] persists in non-Hermitian many-body systems.
Previous results [36,46] are inconclusive because many-
body localization (MBL) [47–68] was not well established.
This problem is relevant to the depinning transition in type-II
superconductors [35–37].
Non-Hermitian setups are relevant for continuously

monitored quantum many-body systems. Indeed, the
non-Hermitian dynamics is justified for individual quantum
trajectories (i.e., pure states where measurement outcomes
are postselected) with no quantum jumps [69]. It is non-
trivial whether disorder affects the dynamics of such open
systems because the non-Hermitian treatment describes
physics differently from the master-equation approach
[70–74], where outcomes are averaged out.
In this Letter, we show that localization suppresses

imaginary parts of many-body eigenenergies for non-
Hermitian interacting Hamiltonians having TRS and can
induce a real-complex transition. Investigating disordered
interacting particles with asymmetric hopping, we find a
real-complex transition at which almost all eigenenergies
become real [Figs. 1(a) and 1(b)]. In the real-eigenenergy

phase, energy absorption or emission disappears despite
non-Hermiticity, demonstrating that quantum states become
dynamically stable. We show that a non-Hermitian MBL
occurs close to the real-complex phase transition point. We
conjecture that these two transitions occur at the same point
in the thermodynamic limit on the basis of an analytical
discussion about the stability of eigenstates. We also
demonstrate that real-complex transitions are absent in
non-Hermitian systems with gain and/or loss that break
TRS, although non-Hermitian MBL still survives [see
Fig. 1(c)]. These results are summarized in Fig. 1(d).

FIG. 1. (a) Weakly disordered models with asymmetric
hopping. Two eigenenergies on the real axis coalesce by a
non-Hermitian perturbation and become complex-conjugate
pairs. (b) Strongly disordered models with asymmetric hopping.
Coalescence of eigenenergies due to perturbation is prohibited by
localization. (c) Disordered models with gain and/or loss.
Eigenenergies acquire nonzero imaginary parts without coales-
cence due to the absence of TRS, irrespective of the presence of
localization. (d) Eigenenergy statistics (reality and level-spacing
statistics) and entanglement entropy of eigenstates for an asym-
metric-hopping model [Eq. (1)] and a gain-loss model [Eq. (2)]
with varying disorder strength.
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Localization suppresses complex eigenenergies.—We
first show that localization suppresses imaginary parts of
many-body eigenenergies for generic non-Hermitian
Hamiltonians having TRS. Let us decompose a local
Hamiltonian into an unperturbed part and a non-
Hermitian perturbation as Ĥ ¼ Ĥ0 þ V̂NH (Ĥ0 can be
non-Hermitian). We consider a set of real eigenenergies
fEag of Ĥ0 and the corresponding right (left) eigenstates
jEr

aiðjEl
aiÞ, which satisfy hEl

ajEr
bi ¼ δab [75].

To seewhy TRS is crucial for the reality of eigenenergies,
we consider the first-order energy shift hEl

ajV̂NHjEr
ai, which

is, in general, complex [Fig. 1(c)] but becomes real when
TRS is imposed [76]. On the other hand, even with TRS,
eigenenergies can coalesce and acquire imaginary parts [1]
for large non-Hermiticity V̂NH. The coalescence occurs due
to the mixing of eigenstates, resulting from higher-order
perturbations. As detailed later, whereas the mixing of two
adjacent eigenstates occurs for delocalized eigenstates, it
does not for MBL eigenstates [77]. In fact, for delocalized
phases,many complex eigenenergies appear via coalescence
of excited eigenstates [78] [Fig. 1(a)], whereas such coa-
lescence is suppressed for MBL phases [Fig. 1(b)].
Model.—We consider hard-core bosons with asymmetric

hoppings on a one-dimensional lattice subject to the
periodic boundary condition:

Ĥ¼
XL
i¼1

½−Jðe−gb̂†iþ1b̂iþegb̂†i b̂iþ1ÞþUn̂in̂iþ1þhin̂i�: ð1Þ

Here, n̂i ¼ b̂†i b̂i is the particle-number operator at site i
with the annihilation operator b̂i of a hard-core boson, g
controls non-Hermiticity, and hi is randomly chosen from
½−h; h�. This model has TRS (complex conjugation) and
can be realized experimentally in continuously measured
ultracold atomic systems, where strong disorder has been
realized [65] and asymmetric hopping can be implemented
[80]. Below, we assume J ¼ 1, U ¼ 2, g ¼ 0.1, and a fixed
particle-number subspace with M ¼ L=2 (half-filling). See
the Supplemental Material [79] for other parameters and an
asymmetric-hopping Bose-Hubbard model [46].
Real-complex transition.—Figure 2(a) shows the eige-

nenergies of the Hamiltonian [Eq. (1)]. The spectrum is
symmetric around the real axis due to TRS. Eigenenergies
with nonzero imaginary parts decrease with increasing h.
We define fIm ¼ DIm=D, where DIm is the number of

eigenenergies with nonzero imaginary parts, D is the total
number of eigenenergies, and the overline denotes the
disorder average [86]. This quantity measures the fraction
of eigenenergies with nonzero imaginary parts.
Figure 2(b) shows the h dependence of fIm for different

values of L. As the system size increases, fIm increases for
h≲ hRc ≃ 8 and decreases for h≳ hRc . We also confirm the
critical scaling collapse of fIm as a function of ðh − hRc ÞL1=ν,
indicating a real-complex phase transition of many-body

eigenenergies at h ¼ hRc in the thermodynamic limit
(L→∞): almost all eigenenergies are complex for h<hRc
and real for h > hRc . This real-complex transition is iden-
tified by the statistics of the spectrum (i.e., the average over
disorder and eigenstates) in the thermodynamic limit (the
maximum imaginary part among all eigenenergies also
exhibits the same transition [79]). This is in contrast to
the conventional PT transition, which is identified to be the
point where eigenstates coalesce without an average over
eigenstates.
Our results show that highly excited eigenenergies

suddenly become almost real with increasing disorder.
This change significantly affects the dynamical stability
of the system. Figure 2(c) shows the evolution of the real

part of energy ERðtÞ ¼ Re½hψðtÞjĤjψðtÞi�. Here,

jψðtÞi ¼ e−iĤtjψ0i
jje−iĤtjψ0ijj

describes a quantum trajectory with no quantum jumps,
which is microscopically justified for continuously mea-
sured systems [69]. Although the energy is conserved for
any h in the Hermitian Hamiltonian, it is sensitive to small

FIG. 2. (a) Eigenenergies of the non-Hermitian Hamiltonian
[Eq. (1)] with L ¼ 12 for two values of h. As h increases, the
number of complex eigenenergies decreases. (b) (top) Depend-
ence of fIm on h for L ¼ 6, 8, 10, 12, 14, and 16 [85]. As L
increases, fIm increases for h≲ hRc ð≃8Þ and decreases for h≳ hRc .
(bottom) Critical scaling collapse of fIm as a function of
ðh − hRc ÞL1=ν, where we find hRc ¼ 8.0 and ν ¼ 0.5. The value
of fIm is identified to be zero if it is below the cutoff of imaginary
part C ¼ 10−13; thus complex eigenvalues (jImEαj ≫ C) and
machine errors (jImEαj ≪ C) are clearly separated. (c) (top) Time
evolution of the real part of energy of the system for h ¼ 2, 4, 6,
7, 8, 10, 12, and 14, where the initial energy decreases with
increasing h. The energy changes in time for h≲ hRc but stays
almost constant for h≳ hRc . (bottom) Dynamics of half-chain
entanglement entropy for g ¼ 0.1 (solid) and g ¼ 0 (dotted) with
different h. For h ¼ 2, SðtÞ first exhibits a linear growth for both
values of g but decreases for t ≃ 5 only for g ¼ 0.1. For h ¼ 14,
SðtÞ exhibits a logarithmic growth for both g ¼ 0 and 0.1. We
take jψ0i ¼ j1010 � � �i as an initial state.
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non-Hermiticity for h≲ hRc . This sensitivity results from
the delocalized eigenstates with nonzero imaginary parts
and signals the dynamical instability. In contrast, the
system is stable for h≳ hRc , where the energy is conserved,
except for negligibly small oscillations because almost all
eigenenergies are real. The real-complex transition is
relevant for the dynamics of other quantities [79], e.g.,
the half-chain entanglement entropy SðtÞ as shown in
Fig. 2(c).
Although the non-Hermitian dynamics is different from

the Hermitian ones, our results indicate that the dynamics
and stationary states are distinct in the two phases. This
provides a first step toward understanding the statistical
mechanics of such open quantum systems. For example,
recurrence does not occur in the complex-eigenenergy
phase, but it does in the real-eigenenergy phase [87].
Non-Hermitian many-body localization.—We next dis-

cuss a localization-delocalization transition. Although it is
nontrivial how to characterize MBL in non-Hermitian
systems, we show that some of the known machinery to
characterize Hermitian MBL can be generalized to the non-
Hermitian regime. We first consider the nearest-level-
spacing distribution of (unfolded) eigenenergies [88] on
the complex plane for small h and on the real axis for large
h in Fig. 3(a) [89]. Here, nearest-level spacings (before
unfolding) for an eigenenergy Eα on the complex plane are
given by the minimum distance of minβjEα − Eβj. For a
weak disorder, we numerically find that the distribution is a
Ginibre distribution PC

GinðsÞ ¼ cpðcsÞ, which describes an
ensemble for non-Hermitian Gaussian random matrices
[88,90]. Here,

pðsÞ ¼ lim
N→∞

�YN−1

n¼1

enðs2Þe−s2
�XN−1

n¼1

2s2nþ1

n!enðs2Þ

with

enðxÞ ¼
Xn
m¼0

xm

m!

and

c ¼
Z

∞

0

dsspðsÞ ¼ 1.1429 � � �

[42,88,91]. Our result demonstrates a non-Hermitian gen-
eralization of the conjecture [49,88,92] that level-spacing
statistics of delocalized Hermitian systems obey the
Wigner-Dyson distribution. This phase is a novel delocal-
ized phase that, we conjecture, emerges for generic
non-Hermitian interacting systems. For large h, the
level-spacing distribution becomes Poissonian on the real
axis PR

PoðsÞ ¼ e−s.
We also consider the half-chain entanglement entropy for

the right eigenstates jEr
αi [93]: Sα ¼ TrL=2½jEr

αihEr
αj�, where

jEr
αi is normalized to unity, i.e., hEr

αjEr
αi ¼ 1

[94]. Figure 3(b) shows the L dependence of Sα=L averaged
over the eigenstates around the middle of the spectrum [95],
and that the entanglement entropy exhibits a crossover from
the volume to area law as the MBL phase sets in around
h ≃ hMBL

c . We confirm the critical scaling collapse as a
function of ðh − hMBL

c ÞL1=ν. These results show that the
delocalized and MBL phases can be distinguished by the
entanglement entropy, even in non-Hermitian systems, in a
manner similar to the Hermitian case [62,96]. For the
delocalized phase, eigenstates of Hermitian or non-
Hermitian systems are well described by those of
Hermitian or non-Hermitian random matrices, which are
regarded as random eigenvectors satisfying the volume law.
For the localized phase, eigenstates are characterized by
quasilocal conserved quantities for both Hermitian and non-
Hermitian cases (because non-Hermiticity does not signifi-
cantly affect eigenstates for the localized phase, as will be
discussed below), and the area law holds.
As discussed above, the stability of the eigenstates

of Ĥ0 under local perturbations V̂NH is important for the
suppression of complex eigenenergies. We consider

FIG. 3. (a) Nearest-level-spacing distribution of (unfolded)
eigenenergies on the complex plane for h ¼ 2 and that of
eigenenergies on the real axis for h ¼ 14 (a single disorder
realization with L ¼ 16). For h ¼ 2, the distribution is
a Ginibre distribution PC

GinðsÞ rather than a Poisson distribution
PC
PoðsÞ ¼ πs=2e−ðπ=4Þs2 on the complex plane [88]. For h ¼ 14,

the distribution is a Poisson distribution on the real axis
PR
PoðsÞ ¼ e−s rather than the Wigner-Dyson distribution

PR
WDðsÞ ¼ πs=2e−ðπ=4Þs2 . Statistics are taken from eigenenergies

lying within �10% of the real and imaginary parts from the
middle of the spectrum. (b) (top) Half-chain entanglement
entropy S=L obtained by averaging Sα=L over disorder [85]
and eigenstates for which the eigenenergies lie within �2% from
the middle of the real part of the spectrum. With increasing h,
S=L shows a crossover from the volume to area law. (bottom) The
critical scaling collapse is confirmed as a function of
ðh − hMBL

c ÞL1=ν, where we use hMBL
c ¼7.1 and ν¼1.3. (c) Stability

of eigenstates G for different values of L and with V̂NH ¼ b̂†i b̂iþ1

[85]. With increasing h, G changes from ∼αL to ∼ − βL
(α; β > 0) at hMBL

c ≃ 7� 1.
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G ¼ ln
jhEl

aþ1jV̂NHjEr
aij

jE0
aþ1 − E0

aj

as a measure of the stability of the eigenstates. The factor in
the logarithm is nothing but the convergence factor in the
standard perturbation theory [79]. Here, we only consider
E0
a ¼ Ea þ hEl

ajV̂NHjEr
ai that stays real, and the labels of

eigenstates a are taken such that E0
1 ≤ E0

2 ≤ � � �. This is a
non-Hermitian generalization of the Hermitian counterpart
introduced in Ref. [77], where ∂G=∂L > 0 for the delo-
calized phase because level spacings (denominator)
become much smaller than typical off-diagonal matrix
elements (numerator) [97–101], and ∂G=∂L < 0 for
the localized phase because quasilocal conserved quantities
strongly suppress the off-diagonal matrix elements
[54,55,66,67].
Figure 3(c) shows the h dependence of G for the non-

Hermitian setting. We find G ∼ αLðα > 0Þ for the delocal-
ized phase and G ∼ −βLðβ > 0Þ for the localized phase,
which is similar to the Hermitian case because of the same
reason as the entanglement entropy. From the point at
which G is independent of L, the non-Hermitian MBL
transition point is determined as hMBL

c ≃ 7� 1.
We conjecture that the real-complex transition point hRc

and the MBL transition point hMBL
c coincide in the

thermodynamic limit. Indeed, from the above discussions
of stability G, the coalescence of adjacent eigenstates is
suppressed due to the non-Hermitian MBL. Furthermore,
for our model in Eq. (1), we can show that the coalescence
process is suppressed even for nonadjacent eigenstates, and
hence the entirely real spectra are realized, as detailed in the
Supplemental Material [79]. Note that, in our numerics up
to L ¼ 16, the two transition points are close (hRc ≃ 8� 1

and hMBL
c ≃ 7� 1 for g ¼ 0.1) but slightly different. On the

basis of the analytical discussions of the stability, we
conjecture that the small deviation is attributed to the
finite-size effects.
Disordered model with gain and loss.—Finally, we show

that, without TRS, the real-complex transition does not
occur upon the non-Hermitian MBL transition. We study
the model with gain and loss, which is experimentally
feasible [102,103]:

Ĥ¼
XL
i¼1

�
−Jðb̂†iþ1b̂iþH:c:ÞþUn̂in̂iþ1þðhi− iγð−1ÞiÞn̂i

�
:

ð2Þ

In this model with broken TRS, the particle gain (loss) at
odd (even) sites (þiγn̂i= − iγn̂i) tends to decrease
(increase) the number of particles at the corresponding
site. Figure 4(a) shows that the eigenenergies have nonzero
imaginary parts, irrespective of h. We confirm fIm ¼ 1 for
any h and L (data not shown).

Although the real-complex transition is absent, the
delocalization-localization transition occurs. Figure 4(b)
shows nearest-level-spacing distributions on the complex
plane for different values of h. For h ≲ hMBL

c ðhMBL
c ≳ 4Þ,

the distribution is a non-Hermitian random-matrix distri-
bution with transposition symmetry [104], which is slightly
different from PC

GinðsÞ; for h≳ hMBL
c , it is a Poisson

distribution PC
PoðsÞ. This change in the level statistics

indicates the non-Hermitian MBL transition. Although
we find that the transition is a crossover for L ¼ 16 (data
not shown), it is a future challenge to investigate whether it
becomes sharp at the MBL transition in the thermodynamic
limit. The entanglement entropy of the eigenstates shows
the volume law for h ≲ hMBL

c and the area law for h ≳ hMBL
c

[see Fig. 4(c)].
Conclusion.—We have shown that non-Hermitian MBL

suppresses complex eigenenergies for generic non-
Hermitian interacting Hamiltonians having TRS and that
a real-complex transition, which occurs upon MBL, pro-
foundly affects the dynamical stability of interacting
systems with asymmetric hopping. We have demonstrated
that real-complex transitions are absent in systems with
gain and/or loss that break TRS, although the non-
Hermitian MBL persists.
The real-complex transition found here is conceptually

new, in that it never occurs in isolated, few-body, or clean
systems. It is interesting to investigate other properties
of the non-Hermitian MBL, such as critical phenomena

FIG. 4. (a) Complex spectrum of the non-Hermitian Hamiltonian
in Eq. (2) with γ ¼ 0.1 for a single disorder realization. Eigene-
nergies have nonzero imaginary parts, irrespective of disorder
strength h. (b) Nearest-level-spacing distributions on the complex
plane for eigenenergies having nonzero imaginary parts. The
distribution exhibits random-matrix universality slightly different
from the Ginibre distribution PC

GinðsÞ [104] for h ¼ 2 and a
Poisson distribution of PC

PoðsÞ for h ¼ 14. Statistics are taken
from eigenstates of a single disorder realization (L ¼ 16) for which
the eigenenergies lie within �10% of the real and imaginary parts
from the middle of the spectrum. (c) (top) System-size dependence
of S=L averaged over eigenstates from the middle (�2%) of the
real part of the spectrum for different values ofLwith γ ¼ 0.1 [85].
Entanglement entropy decreases with increasingLwhen the many-
body localization sets in. (bottom) The critical scaling collapse of
S=L is found as a function of ðh − hMBL

c ÞL1=ν with hMBL
c ¼ 4.2

and ν ¼ 1.8.
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(implied by our critical scaling collapse), where all of the
non-Hermiticity, disorder, and interaction come into play.
Our work is also relevant to quantum chaos [92,105,106] in
open interacting systems described by non-Hermitian
Hamiltonians, as indicated by its random-matrix level
statistics. The properties of non-Hermitian MBL, such as
the entanglement entropy, may offer a new approach to
understanding the interaction effect in the depinning
transition of type-II superconductors [35].
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