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We formulate a discretization of σ models suitable for simulation by quantum computers. Space is
substituted with a lattice, as usually done in lattice field theory, while the target space (a sphere) is replaced
by the “fuzzy sphere”, a construction well known from noncommutative geometry. Contrary to more naive
discretizations of the sphere, in this construction the exact O(3) symmetry is maintained, which suggests
that the discretized model is in the same universality class as the continuum model. That would allow for
continuum results to be obtained for very rough discretizations of the target space as long as the space
discretization is made fine enough. The cost of performing time evolution, measured as the number of
controlled-NOT operations necessary, is 12LT=Δt, where L is the number of spatial sites, T the maximum
time extent, and Δt the time spacing.
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Introduction.—The advent of quantum computers opens
up a new method to attack several physics problems which
have, up to now, remained intractable. Perhaps the most
interesting of those is the numerical treatment of many-
body or field theory with sign problems. In particular, the
nonperturbative calculation of real time observables, where
very little progress has been made up to now [1–3], is an
obvious target for quantum computation. Of course, the
hope of attacking these problems hinges on being able to
formulate quantum field theories in a way suitable for
quantum computers. This topic is still in its infancy. The
naive expectation is that fermionic fields can be more easily
implemented in quantum computers, as a qubit can encode
the presence or absence of a fermion in a given state. This is
borne out by the few existing calculations that have been
performed on quantum computers [4–6]. Bosonic fields are
not so simply implemented. The attempts made up to now
involve either eliminating the bosonic fields using some
special property of the model or truncating the occupation
number at any given site [7–18]. The situation is analogous
to the early days of (classical) computing in field theory.
Classical bits also seem more amenable to describing
fermionic fields than bosonic ones, as the cost of storing
and manipulating reasonable approximations to real num-
bers was too high to be practical in the early days. There

were at the time several attempts made at substituting
bosonic continuous field values with a finite set of values
[19–23]. In all of these schemes, the symmetry of the model
is reduced by the discretization of the bosonic fields.
When discretization reduces the symmetry, it is unclear

whether, in the spacetime continuum limit, the original
model is recovered. For instance, the nonlinear σ model in
one spatial dimension with fields taking values on a sphere
was studied in the approximation where the sphere is
substituted by the vertices of a platonic solid. It seems to
still be controversial whether the dodecahedron model is in
the same universality class as the original spherical model
[24–29]. In the case of gauge theories, the question, at least
for Abelian theories, was settled long ago: Abelian gauge
theories with any finite discrete group ZN are not in the
same universality class as the U(1) model and do not
approach the U(1) gauge theory as the spacetime con-
tinuum limit is taken [30–32].
This suggests that, to obtain the right continuum limit,

we should construct a scheme where all of the symmetries
of the original model are maintained while discretizing the
field variables in order to make the Hilbert space have a
finite (and hopefully small) dimension. This Letter presents
such a formulation based on a well-known construction in
noncommutative geometry (the “fuzzy sphere” [33,34])
used before in the study of (super-)membranes. The
resulting system can be simulated on a quantum computer
with two qubits per spatial site. We implement our scheme
on a simulated quantum computer and verify its correct-
ness. The number of gates required is of the order of
∼12LðT=ΔtÞ, where L is the number of spatial sites, T the
maximum time extent, and Δt the time discretization step.
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σ model on the fuzzy sphere.—The O(3) σ model is
defined on a discretized space by the Hamiltonian

H ¼
X
r

�
g2

2
πðrÞ2 þ 1

2g2Δx2
½nðrþ 1Þ − nðrÞ�2

�

¼
X
r

�
g2

2
πðrÞ2 þ 1

g2Δx2
½1 − nðrþ 1Þ · nðrÞ�

�
; ð1Þ

where n is a unit three-dimensional vector, π2 is the
Laplace-Beltrami operator on S2, and the sum runs
over the L spatial lattice sites. The global symmetry
nðrÞ → O · nðrÞ, where O is an orthogonal matrix, is
evident. This model is asymptotically free in one spatial
dimension [35].
In the Hamiltonian formalism, the wave function is a

function of L copies of the sphere S2, ψðn1;…;nLÞ. The
Hilbert space is infinite dimensional even for L ¼ 1. We
will approximate this model by substituting the target space
(the sphere) by the fuzzy sphere [33,34]. The fuzzy sphere
is not a subset of points of the sphere; instead, it is the
functions on the sphere that are substituted by elements of a
finite-dimensional Hilbert space. Let us demonstrate the
construction first in the L ¼ 1 case, where ψðnÞ can be
expanded as

ψðnÞ ¼ ψ0 þ ψ ini þ
1

2
ψ ijninj þ � � � ; ð2Þ

constrained by nini ¼ 1. The fuzzy sphere regularization
substitutes this Hilbert space with the space of matrices

Ψ ¼ ψ01þ ψ iJi þ
1

2
ψ ijJiJj þ � � � ; ð3Þ

where Ji, i ¼ 1, 2, 3 are generators of SU(2) in a given
representation j (normalized such that

P
3
i¼1 J

2
i ¼ 1). The

important difference between Eqs. (2) and (3) is that Eq. (3)
terminates (for instance, if j ¼ 1=2, J2i ∼ σ2i ¼ 1). Thus,
the infinite-dimensional Hilbert space is substituted by a
space of dimension ð2jþ 1Þ2. Since the space is finite
dimensional, it can be informally thought of as being the
space of functions defined on a space with a finite number
of points, the fuzzy sphere. In the j ¼ 1=2 case, the space
of matricesΨ is four-dimensional, and the fuzzy sphere can
be thought of as a four-point discretization of the sphere.
However, the “points” of the fuzzy sphere are “spread out”
and preserve rotational symmetry. Notice that the fuzzy
sphere is not defined as a subset of points of the sphere. It is
the algebra of functions on the sphere that is deformed into
a (noncommutative) algebra given by matrix multiplication.
Still, the fuzzy sphere is an approximation to the sphere in
the sense that an operation defined on the sphere can be
approximated by equivalent constructions on the fuzzy
sphere. For instance, the norms on the sphere and on the
fuzzy sphere satisfy

1

2jþ 1
trðΨ†ΨÞ !

j→∞

Z

S2

dΩ
4π

jψ j2: ð4Þ

We refer to Ref. [34] for a discussion of the geometrical
constructs of the sphere framed in terms of the algebra of
functions (and their extensions to the fuzzy sphere). In
particular, the Hamiltonian of the σ model with one spatial
site is simply the Laplacian on the sphere (i.e., the quantum
mechanics of a free particle on the sphere)

−
g2

2
∇2ψ → H0Ψ ¼ κ

g2

2

X3

k¼1

[Jk; ½Jk;Ψ�]; ð5Þ

with κ being a normalization factor. The eigenvalues of the
Laplacian operator on the sphere are lðlþ 1Þ for l ¼
0; 1;… with multiplicities 2lþ 1. When κ ¼ jðjþ 1Þ,
the spectrum of H0 is exactly the same but is truncated
to its lowest ð2jþ 1Þ2 values. This is in contrast to other
discretizations where the lowest eigenvalues are reproduced
only approximately. Notice also that, as stressed before and
contrary to other discretizations, H0 has an exact O(3)
invariance Ψ → UðgÞ†ΨUðgÞ, where U is the representa-
tion of the rotation g.
From now on, we will work with j ¼ 1=2, so the

dimension of the Hilbert space at each site is 4. A
convenient basis for this space is T 0 ¼ i1=

ffiffiffi
2

p
and

T i ¼
ffiffiffiffiffiffiffiffi
3=2

p
Ji, which satisfies trðT †

aTbÞ ¼ δab. In a system
with L > 1 spatial sites, the Hilbert space of the system is
the tensor product of L single-site Hilbert spaces. The
generic wave function can be written as

Ψ ¼
X3

a0¼0

� � �
X3

aL−1¼0

ψaL−1;…;a0 jaL−1;…; a0i;

with jaL−1;…; a0i≡ TaL−1 ⊗ � � � ⊗ Ta0 : ð6Þ

The kinetic term H0 ¼ P
nH

0ðrÞ of the Hamiltonian is the
sum of Eq. (5) acting on the Hilbert space of each site, and
it is diagonal in the basis jaL−1;…; a0i [for a single-site
operator A, AðrÞ≡ 1⊗L−r−1 ⊗ A ⊗ 1⊗r−1 denotes the
operator acting on site r]. In the T basis, the kinetic term
is represented by a sum of similar tensor products of 4 × 4
matrices with

h0ij ¼ hT ijH0jT ji ¼ trT †
i H

0T j

¼ kg2

2

X3

k¼1

trT †
i [Jk; ½Jk; T j�];

and thus h0 ¼ g2

0
BBB@

0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1
CCCA ð7Þ
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The eigenvalues of H0 are E0
aL−1;…;a0 ¼ g2

P
r1 − δa0; i.e.,

the kinetic energy of site r is 0 if ar ¼ 0, and g2 otherwise.
The “interaction” term arises from expanding the

nearest-neighbor interaction term −nðrþ 1Þ · nðrÞ in
Eq. (1): HI¼P

r

P
3
k¼1H

Ikðrþ1;rÞ with HIkðrþ 1; rÞ ¼
−ðκ=g2Δx2ÞðJkÞrþ1ðJkÞr. They involve only two neighbor
sites at a time (one link). In the T basis, the Jk operators are
represented by 4 × 4 matrices ðjkÞij ≡ hT ijJkjT ji:

j1¼ 1⊗ σ2=
ffiffiffi
3

p
; j2¼ σ2⊗ σ3=

ffiffiffi
3

p
; j3¼ σ2⊗ σ1=

ffiffiffi
3

p
;

ð8Þ

where the σ’s are Pauli matrices. The interaction term
HIkðrþ 1; rÞ in the T basis is the matrix hIkðrþ 1; rÞ ¼
−ðκ=g2Δx2ÞðjkÞrþ1ðjkÞr. By this we mean that the element
haL−1;…; a0jHIkja0L−1;…; a00i is hIkðrþ 1; rÞi;j, where i
and j are numbers with representation in basis 4
aL−1;…; a0 and a0L−1;…; a00, respectively (the matrix
indices run from 0 to 4L − 1).
Implementation of time evolution and estimate of

resources.—The implementation of the time evolution of
the model in terms of quantum gates starts by splitting the
time evolution over a number of smaller steps Δt ¼ t=N,
and each time step using the Suzuki-Trotter formula. Each
time step is further split into the evolution due to the four
parts of H ¼ H0 þHI1 þHI2 þHI3:

e−iHt ≈ ðe−iHI3Δte−iH
I2Δte−iH

I1Δte−iH
0ΔtÞN: ð9Þ

The state of the system is time evolved by first applying the
kinetic term e−iΔtH

0

site by site; the site order does not
matter since the H0ðrÞ for different r commute. We follow
the kinetic term with the first interaction term e−iΔtH

I1
. This

evolution is done link by link, and again, the order does not
matter, as all HIkðr; rþ 1Þ commute with each other. We
use periodic boundary conditions, so the evolution of the
link from r ¼ L − 1 to r ¼ L is followed by evolution of a
link from r ¼ L to r ¼ 1. The link-by-link evolution is
repeated for e−iΔtH

I2
and e−iΔtH

I3
. This process is then

repeated N times.
The local four-dimensional Hilbert space is encoded by

two qubits, so

jaL−1;…; a0i ↔ jq2L−1; q2L−2|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
siteL−1

;…; q1; q0|fflffl{zfflffl}
site0

i; ð10Þ

with the pair of qubits being the binary digits of the
corresponding index a. For instance, q1 ¼ q0 ¼ 0 corre-
sponds to a0 ¼ 0, and q1 ¼ q0 ¼ 1 corresponds to a0 ¼ 3.
In this basis, the kinetic term evolution at each site is

e−iΔth0 ¼ e−iΔt

0
BBB@

eiΔt 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1
CCCA; ð11Þ

where from now on we set g2 ¼ 1 and κ=g2Δx2 ¼ 1 for
simplicity. The circuit implementing e−iΔtH

0

is depicted on
the left side of Fig. 1. Since HS†σ2SH ¼ σ3, the interacting
term HI1 ¼ 1

3
1 ⊗ σ2 ⊗ 1 ⊗ σ2 is related by a similarity

transformation to 1
3
1 ⊗ σ3 ⊗ 1 ⊗ σ3, with the change of

basis given by single qubit operations (here H is the
Hadamard and S the phase one-qubit gate). Similarly,
since Hσ1H ¼ σ3, HI2 and HI3 are related to
1
3
σ3 ⊗ σ3 ⊗ σ3 ⊗ σ3. We now use the facts that a con-

trolled-NOT (CNOT) gate implements a similarity trans-
formation that takes σ3 ⊗ σ3 into σ3 ⊗ 1, and that
exp½iθσ3 ⊗ 1� is simply a rotation on the left qubit. For
HI1, we apply this for the q2 and q0 qubit pair, whereas for
the other two terms we have to apply the CNOT trans-
formation on the ðq1; q0Þ and ðq3; q1Þ pairs to reduce
σ3 ⊗ σ3 ⊗ σ3 ⊗ σ3 to σ3 ⊗ 1 ⊗ σ3 ⊗ 1, and then a CNOT

tranformation on the ðq3; q1Þ pair to reduce the exponen-
tiation to a single qubit rotation. The quantum circuit
implementations are found in Fig. 1.
The counting of quantum gates is dependent on the

instruction set available in the hardware. However, the
difficulty in the hardware implementation of two-qubit
gates makes it unlikely that any two-qubit gate besides the
CNOT gate will be available in the hardware. CNOT gates are
also, by far, the ones most likely to generate decoherence.
Thus, we will count only the number of CNOT gates
required for our implementation. The kinetic term circuit
has two CNOT gates per site (notice that a controlled-U1

operation requires two CNOT gates to be implemented). The
HI2 and HI3 link terms seem to require six CNOT gates per

FIG. 1. Circuit implementing the time evolution. Starting from the left, we display the kinetic term exp½−iΔtH0� (for two sites) and the
link terms: exp½−iΔtHI1ð1; 0Þ�, exp½−iΔtHI2ð1; 0Þ�, and exp½−iΔtHI3ð1; 0Þ�. The notation for the gates used here is standard in the
quantum computing literature [36].

PHYSICAL REVIEW LETTERS 123, 090501 (2019)

090501-3



site. However, since we apply eiδtH
I2
on every link, the gates

shown in the dashed box in Fig. 1 cancel between adjacent
links and do not have to be applied. The result is that only
four CNOT gates per link are required. A similar thing
happens to the HI3 links. Finally, HI1 requires two CNOT

gates, for a total of 12 CNOT gates per site (for periodic
boundary conditions, where there are as many links as
sites). Since T=Δt steps are needed, 36ðT=ΔtÞ CNOT gates
are required to implement UðTÞ in our three-site model.
This gate depth renders the model inaccessible to the
current generation of processors. As a proof of principle,
however, we run our algorithm in a quantum computer
simulator (QISKIT [37,38]) for L ¼ 3, and results for
Δt ¼ 0.2, Δx ¼ 1, g2 ¼ 1 are shown in Fig. 2. The results
are, for illustrative purposes, the time-dependent probabil-
ities of finding the states j000000i, j000001i, and
j111111i, starting with the initial state with equal ampli-
tudes of all elements of the basis jq5q4q3q2q1q0i obtained
by applying a Hadamard transformation on the state
j000000i. In the same figure, we show the exact time
evolution and Suzuki-Trotter-formula-mediated evolution
by multiplying the appropriate 43 × 43 matrices. The error
bars reflect the expected variance from the quantum
mechanical measurement.
It is important to stress that every step in our construction

can be easily carried out in much bigger lattices, and even
in more spatial dimensions. The size of the blocks of time
evolution—involving at most four qubits at a time—are
independent of the system size. Also, the time evolution
due to the kinetic term can be applied simultaneously to all
sites, and the evolution due to the hopping term can be
applied simultaneously to half of the links at once. The
method is essentially unchanged as the number of spatial

dimensions is increased. Unfortunately, in the implemen-
tation in terms of the quantum circuits we found, the
number of CNOT gates is a little too large for current
quantum computers. Our attempts at running it on the
IBM’s ibmqx4 machine have resulted in mostly noise.
Conclusions and prospects.—One issue to be faced on

the road to using quantum computers in quantum field
theory is the presence of bosonic fields. The Hilbert space
of a bosonic theory has an infinite number of dimensions
per spatial site. In contrast, the Hilbert space describing a
quantum computer with a finite number of registers is finite
dimensional. Thus, even after discretizing space, some
further truncation of the field space is required [5,7]. We
propose a method to accomplish which preserves the
theory’s O(3) symmetry.
There are two ways in which our fuzzy sphere model

approximates the continuum O(3) σ model. First of all, by
increasing the dimension 2jþ 1 of the representation of
O(3), the fuzzy sphere approaches the O(3) σ model
defined by Eq. (1). Perhaps more interesting is the fact
that the fuzzy model, defined by H ¼ H0 þHI (general-
ized to a large number of spatial sites), and the σ model
defined by the lattice Hamiltonian, Eq. (1), are likely to
approach the same continuum limit as Δt;Δx → 0. In fact,
the continuum limit of the σ model is obtained by tuning
Δt;Δx → 0, and g2 is such a way as to keep physical
quantities (mass gap, scattering amplitudes) fixed in
physical units [perturbation theory indicates that the
model is asymptotically free, so the correct scaling is g2 ∼
−1= logðΔxÞ [35] ]. In this limit, details of the Hamiltonian
become irrelevant, and any other Hamiltonian with the
same field content and symmetries, on account of univer-
sality, gives rise to the same continuum limit [39]. More
precisely, any other operators, consistent with the O(3)
symmetry, are of higher dimension and, presumably, are
irrelevant in the continuum limit. The reasonable
assumption of universality can be checked in a classical
calculation. The Suzuki-Trotter-formula-mediated time
evolution operator [Eq. (9)] corresponds to an action
discretized in both time and space. A Monte Carlo calcu-
lation using this action (analytically continued to imaginary
time) can demonstrate whether the fuzzy model is in the
same universality class as the σ model and thus has the
same Δt;Δx → 0 limit.
Our model shares features with quantum link models

[40–42], in particular, the use of quantum spins as
dynamical variables. They differ, however, in that quantum
link models are formulated in one extra dimension, and the
ð1þ 1ÞD O(3) model arises through dimensional reduc-
tion. Since the spatial part of the ð1þ 2ÞD theory survives
this reduction, quantum link models access Euclidean
correlators of the ð1þ 1ÞD theory, while our model
accesses the real time correlators. Our truncation of the
Hilbert space is also similar to Ref. [43], which makes the
O(3) model amenable to tensor networks. Finally, our
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FIG. 2. Probabilities of states j000000i, j000001i, and
j111111i starting from ðj000000iþj000001iþ���þj111111iÞ=ffiffiffiffiffi
64

p
. The solid lines are the exact result obtained by diagonal-

ization of the Hamiltonian. The empty circles are from the
Suzuki-Trotter formula, and their error bars the expected un-
certainty following the binomial distribution. The filled points are
from the quantum simulator. Each data point from the simulator is
an average of 4000 measurements.
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approach should not be confused with theories with non-
commutative spacetime [44–47], which are motivated by
string theory and serve as an alternative to lattice regulari-
zation [48].
Among theories of physical significance, bosonic fields

also appear in principal chiral models (as, for instance, in
low energy QCD) and gauge theories. These bosonic fields
take values on group manifolds. A slight modification of
the scheme proposed in this Letter can also be used in these
cases, but it is somewhat more involved. A full account of
these extensions will appear separately.
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Note added.—Recently, numerical evidence was presented
for a similar digitization of the O(3) model in the same
universality class as the ð1þ 1ÞD O(3) model [49].
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