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The spin is the prime example of a qubit. Encoding and decoding information in the spin qubit is
operationally well defined through the Stern-Gerlach setup in the nonrelativistic (i.e., low velocity) limit.
However, an operational definition of the spin in the relativistic regime is missing. The origin of this
difficulty lies in the fact that, on the one hand, the spin gets entangled with the momentum in Lorentz-
boosted reference frames, and on the other hand, for a particle moving in a superposition of velocities, it is
impossible to “jump” to its rest frame, where spin is unambiguously defined. Here, we find a quantum
reference frame transformation corresponding to a “superposition of Lorentz boosts,” allowing us to
transform to the rest frame of a particle that is in a superposition of relativistic momenta with respect to the
laboratory frame. This enables us to first move to the particle’s rest frame, define the spin measurements
there (via the Stern-Gerlach experimental procedure), and then move back to the laboratory frame. In this
way, we find a set of “relativistic Stern-Gerlach measurements” in the laboratory frame, and a set of
observables satisfying the spin suð2Þ algebra. This operational procedure offers a concrete way of testing
the relativistic features of the spin, and opens up the possibility of devising quantum information protocols
for spin in the special-relativistic regime.
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Introduction.—The description of physical systems is
standardly given in terms of coordinates as defined by
reference frames. Thanks to the principle of covariance,
stating the equivalence of all descriptions regardless of the
choice of the reference frame, it is possible to choose the
reference frame where the relevant dynamical quantities can
be most conveniently described. For example, it is typically
easier to describe the dynamics of a system from the point of
view of its rest frame, because only internal degrees of
freedom (d.o.f.) contribute to the dynamics in the rest frame.
When the external d.o.f. (momentum) of the system are

in a quantum superposition from the perspective of the
laboratory, no classical reference frame transformation can
map the description of physics from the laboratory to the
rest frame. However, this can be achieved via a quantum
reference frame (QRF) transformation between two frames
moving in a superposition of velocities relative to one
another. In order to achieve such change of quantum
reference frame in the nonrelativistic regime, a formalism
was introduced in Ref. [1] to change the description to a
reference frame which is in a quantum relationship with the
initial one. This QRF transformation only depends on
relational quantities, and it has also been derived starting
from a gravity inspired symmetry principle in a perspective
neutral model [2,3]. An immediate consequence of the
formalism is that entanglement and superposition are QRF-
dependent features. This formalism naturally leads to the

possibility of identifying the rest frame of a quantum
system in an operational way.
Here, we further develop this approach in the case of a

relativistic quantum particle with spin, with the goal of
finding an operational description of the spin in a special-
relativistic setting. Spin is operationally defined in the rest
frame of a particle (or, to a good approximation, for slow
velocities) via the Stern-Gerlach experiment. When the
particle has relativistic velocities, the spin d.o.f. transforms
in a momentum-dependent way. If a standard Stern-Gerlach
measurement is performed on a particle in a pure quantum
state moving in a superposition of relativistic velocities, the
operational identification of the spin fails, because no
orientation of the Stern-Gerlach apparatus returns an out-
comewith unit probability. This happens because, as shown
in Ref. [4], the reduced density matrix of the spin d.o.f. is
mixed when a Lorentz boost is performed and the momen-
tum is traced out. The question arises whether it is possible
to find “covariant measurements” of the spin and possibly
momentum, which predict invariant probabilities in differ-
ent Lorentzian reference frames also for the case of a
quantum relativistic particle moving in a superposition of
velocities. In this case, it would be possible to map the
unambiguous description of spin in the rest frame of the
particle to the frame of the laboratory, and therefore derive
the corresponding observables to be measured in the
laboratory frame to verify spin with probability one.
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The question of finding such covariant measurements is
motivated by the ubiquitous applications where the spin
d.o.f. is used as a qubit, to encode and transmit quantum
information. Such protocols are no longer valid in a
relativistic context, thus limiting the range of applicability
of techniques involving spin as a quantum information
carrier. It is then important to explore possible alternative
methods which could overcome this limitation. In the
context of relativistic quantum information, this question
has been extensively discussed [4–17] in relation to Wigner
rotations [18–20] and has been related to the problem of
identifying a covariant spin operator. The problem of
identifying such a covariant spin operator had arisen long
before the birth of relativistic quantum information, and
dates back to the early times of quantummechanics [21–23].
Since then, a multitude of relativistic spin operators have
been proposed [24], such as the Frenkel [22], the Pauli-
Lubański [25–27], the Pryce [28], the Foldy-Wouthuysen
[29,30], the Czachor [31], the Fleming [32], the Chakrabarti
[33], and the Fradkin-Good [34] spin operators. A compar-
ative description of spin observables can be found
in Ref. [17].
Here, we introduce “superposition of Lorentz boosts”

which allow us to “jump” into the rest frame of a relativistic
quantum particle even if the particle is not in a momentum
eigenstate. In the rest frame, the spin observables fulfill the
spin suð2Þ algebra (the algebra of a qubit) and are
operationally defined through the Stern-Gerlach experi-
ment. We transform the set of spin observables in the rest
frame back to an isomorphic set of observables in the
laboratory frame. The transformed observables are in
general entangled in the spin and momentum d.o.f. The
set fulfills the suð2Þ algebra and is operationally defined
through a “relativistic Stern-Gerlach experiment”: we
construct the interaction and the measurement between
the spin-momentum d.o.f. and the electromagnetic field in
the laboratory frame which gives the same probabilities as
the Stern-Gerlach experiment in the rest frame. This set of
observables in the laboratory frame allows us to partition
the total Hilbert space into two (highly degenerate) sub-
spaces corresponding to the two outcomes “spin up” and
“spin down.” Hence, with QRFs techniques the relativistic
spin can effectively be described as a qubit in an opera-
tionally well-defined way.
A relativistic Stern-Gerlach experiment.—In the follow-

ing, we build a QRF transformation between the reference
frame of a laboratory C of mass mC and the rest frame of
the external d.o.f. A of a relativistic quantum particle of
mass mA > 0 with spin d.o.f. Ã, as illustrated in Fig. 1. We
allow the particle to have any quantum state, and in
particular to move in a superposition of momenta. This
implies that there is a nonclassical relationship between the
initial and the final reference frame, i.e., that the rest frame
A and the laboratory frame C are not related by a standard
boost transformation. We show in this section how to

generalize the boost transformation to this case. Formally,
the situation we consider can be described by taking the
one-particle sector of the positive-energy solutions of the
Dirac equation in the Foldy-Wouthuysen representation
[29]. (For simplicity, we only consider spin-1=2 particles,
but the method can be straightforwardly applied to arbi-
trary spin).
Following Ref. [1] (see Supplemental Material [35] for a

review of the original formalism), when we “stand” in the
rest frame of a particle, we describe all the systems external
to the particle, but not the external d.o.f. (i.e., the momen-
tum d.o.f.) of the particle itself. Hence, the quantum state
describes the relational information in a given reference
frame. In the reference frame in which A is at rest, the
quantum state is assigned to the internal d.o.f. Ã and the
laboratory C. For simplicity, we consider that the particle
and the laboratory are moving with constant, yet not
necessarily well-defined, relative velocity and define the
x axis along the direction of the relative motion. The total
state of the spin and the laboratory is assumed to be

jΨiðAÞ
ÃC

¼ jσ⃗iÃjψiC; ð1Þ

where jσ⃗iÃ is any vector representing the state of the spin in
the rest frame A. In the rest frame, the spin state can in
principle be tomographically verified by performing a series
of standard Stern-Gerlach measurements. The state of the
laboratory has a momentum-basis representation along the x
direction (at this stage, we neglect the quantum state in
the y and z direction) jψiC ¼ R

dμCðπCÞψðπCÞjπCiC, where
dμCðπCÞ ¼ dπC=½ð2πÞ1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðm2

Cc
2 þ π2CÞ

p
� is the Lorentz-

covariant integration measure.
We now construct the transformation corresponding to

the “superposition of Lorentz boosts” to the QRF of the
laboratory. The unitary operator to boost to the QRF C is

ŜL ¼ PðvÞ
CAUÃðπ̂CÞ; ð2Þ

where UÃðπ̂CÞ is a unitary transformation acting on
the total Hilbert space HÃ ⊗ HC (notice that π̂C is an

(a) (b)

FIG. 1. (a) The state of a Dirac particle A with spin Ã as seen
from the laboratory perspective (C). When the state is in a
superposition of relativistic velocities −v1 and −v2, the spin d.o.f.
and the momentum d.o.f. are no longer separable. (b) The state of
the spin Ã and of the laboratory C as seen in the rest frame of the
quantum particle A. In this quantum reference frame, the spin is
operationally defined by means of the Stern-Gerlach experiment.
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operator), and PðvÞ
AC is the “generalized parity operator”

introduced in Ref. [1], whose explicit expression is PðvÞ
CA ¼

PAC exp ½ði=ℏÞ log
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mA=mC

p ðq̂Cπ̂C þ π̂Cq̂CÞ�, where PAC

is the parity-swap operator mapping x̂A → −q̂C and p̂A →
−π̂C (and viceversa), where q̂C, π̂C are canonically con-
jugated one-particle operators ofC in the reference frame of
A and x̂A, p̂A are canonically conjugated one-particle
operators of A in the reference frame of C. Additionally

to the action of PAC, the operator PðvÞ
AC rescales the

momentum of A by the ratio of the masses of A and C,

i.e., PðvÞ
ACp̂AP

ðvÞ†
AC ¼ −ðmA=mCÞπ̂C. This enforces the

physical condition that the velocity of A is mapped to
the opposite of the velocity of C via the transformation.
(For a relativistic particle the relation between the
i-th velocity component and the momentum is vi ¼
ðpi=miÞ½1þ ðjp⃗j2=m2

i c
2Þ�−1=2, where jp⃗j2 is the norm of

the spatial momentum. Therefore, only the ratio between
momentum and mass determines the velocity.) The operator
ŜL can be defined via its action on a basis of the total
Hilbert space of the spin and the laboratory ŜLjσ⃗iÃjπiC ¼
j−ðmA=mCÞπ;ΣπiAÃ, where the state jp;ΣpiAÃ is defined
via a standard Lorentz boost ÛðLpÞ from the rest frame as

jp;ΣpiAÃ ¼ ÛðLpÞjk; σ⃗iAÃ and k ¼ ðmc; 0⃗Þ is the momen-
tum in the rest frame. In the Supplemental Material [35] we
derive the transformation ŜL in terms of standard Lorentz
boosts connecting two relativistic reference frames where
the parameter of the boost transformation is promoted to an
operator.
The state of A and Ã expressed in the laboratory frame is

jΨiðCÞ
AÃ

¼ ŜLjΨiðAÞÃC
, and is explicitly written as

jΨiðCÞ
AÃ

¼
Z

dμAðpAÞψ
�
−
mC

mA
pA

�
jpA;ΣpA

iAÃ; ð3Þ

where dμAðpAÞ ¼ dpA=½ð2πÞ1=2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðm2

Ac
2 þ p2

AÞ
p

� and the
spin d.o.f. cannot be separated anymore from the momen-
tum d.o.f., which means that the state is not a product state
in the laboratory frame. Notice that the effect of the ŜL
transformation is to apply the usual boost transformation
conditional on C’s momentum d.o.f. In the laboratory
frame C, unless particle A is in a sharp momentum state,
no spin measurement in a standard Stern-Gerlach experi-
ment would give a result with probability one, because of
two reasons: the spin and momentum are no longer
separable, and the relation between the laboratory and
the rest frame is not a standard (classical) reference frame
transformation. Our goal is to devise a different measure-
ment in the laboratory reference frame, possibly involving
both the spin and momentum d.o.f., which gives the same
probability distribution as a standard Stern-Gerlach experi-
ment would give, if performed in the rest frame.

In order to devise such measurement we note that, in the
laboratory frame, it is possible to define the observables
corresponding to the spin operators in the rest frame by
transforming the spin, as defined in the rest frame, with a
QRF transformation

Ξ̂i ¼ ŜLðσ̂i ⊗ 1CÞŜ†L; i ¼ x; y; z: ð4Þ

In terms of the momenta and of the manifestly covariant
Pauli-Lubański operator Σ̂p̂A

¼ ðΣ̂0
p̂A
; ⃗Σ̂p̂A

Þ, the operators Ξ̂i

are expressed as (see Supplemental Material [35]) ⃗̂Ξ¼
⃗̂Σp̂A

− γ̂A=ðγ̂Aþ1Þð ⃗̂Σp̂A
· ⃗̂βAÞ ⃗̂βA, where γ̂A¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þp̂2

A=ðm2
Ac

2Þ
p

and ⃗β̂A ¼ ðβ̂xA; β̂yA; β̂zAÞ, where each component is β̂iA ¼
ðp̂i

A=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

Ac
2 þ ⃗p̂2

A

q
Þ with i ¼ x, y, z. The operators Ξ̂i are

equivalent to the Foldy-Wouthuysen [29] or Pryce spin
operator [28]. By definition, these operators satisfy the
suð2Þ algebra ½Ξ̂i; Ξ̂j� ¼ iϵijkΞ̂k, and have the same eigen-
values as the Pauli operators σ̂i, i ¼ x, y, z. This last
property can be easily checked by choosing an eigenvector
jλii of the operator σ̂i in the rest frame A, such that σ̂ijλii ¼
λijλii and by noting that Ξ̂iŜLjλiiÃjψiC ¼ λiŜLjλiiÃjψiC.
Hence, it is possible to partition the total Hilbert space
HA ⊗ HÃ into two equivalence classes, defined as

H0 ¼ fjΨiAÃ ∈ HA ⊗ HÃ such that

jΨiAÃ ∼ ŜLj0iÃjψiC; ∀ jψiC ∈ HCg; ð5aÞ

H1 ¼ fjΦiAÃ ∈ HA ⊗ HÃ suchthat

jΦiAÃ ∼ ŜLj1iÃjϕiC; ∀ jϕiC ∈ HCg; ð5bÞ

where j0iÃ and j1iÃ are the eigenvectors of σ̂z and two
states are said to be equivalent, i.e., jΨiAÃ ∼ ŜLjiiÃjψiC,
with i ¼ 0; 1, if they are both eigenvectors of the Ξ̂z
operator with the same eigenvalue. (Notice that we could
have chosen any other Pauli operator to define this
partition.) We can then build a partition of the Hilbert
space into two highly degenerate subspaces, one corre-
sponding to the “spin up” and the other to the “spin down”
eigenvalue, and on which it is possible to define a set of
operators satisfying the suð2Þ algebra, which can be used
to encode or decode information of a single qubit.
The operators ⃗Ξ̂ in general act on both the external and

the internal d.o.f. of the particle. Operationally, they can be
defined via a “relativistic Stern-Gerlach experiment,” illus-
trated in Fig. 2. Traditionally, in a Stern-Gerlach experi-
ment, the spin measurement is performed by applying a
magnetic field, which interacts with the spin as B⃗ · σ⃗ and is
inhomogeneous along the direction of its orientation,
i.e., B⃗ ¼ Bðr⃗ · n⃗Þn⃗, where n⃗ gives the direction and
r⃗ ¼ ðx; y; zÞ. If the magnetic field is aligned precisely in
the direction in which the spin state is prepared, the
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outcome is obtained with certainty. However, if the particle
carrying the spin is moving in a superposition of relativistic
velocities, no measurement of the spin alone in the
laboratory frame will return the result with probability
one in general. To treat such a case we set up a hypothetical
Stern-Gerlach experiment in the rest frame of the particle,

where the interaction Hamiltonian is HðAÞ
int ¼ μB⃗ðAÞ · σ⃗ and

μ is a coupling constant. We assume that the direction in
which the magnetic field is aligned n⃗ is orthogonal to
the direction of the boost x. Formally, this geometric
configuration requires us to enlarge the Hilbert space of
the laboratory to the z direction, which we identify
with the direction n⃗ of deflection, and modify our previous
definition of the state in Eq. (1) as jψiC ¼ jψxiCjψ ziC,
where jψxiC transforms with ŜL and jψ ziC is left invariant
by the transformation ŜL, except for the fact that the
label is changed from C to A, i.e., ŜLjψ ziC ¼ jψ ziA.
Additionally, we assume that the motion in the
z direction is nonrelativistic. We then transform the
Hamiltonian to the laboratory frame via the QRF
transformation ŜL. Knowing that the magnetic field
transforms under superposition of Lorentz boosts as
⃗̂SΛðB⃗ðAÞÞ¼γ̂A½B⃗ðCÞ−γ̂A=ðγ̂Aþ1Þð ⃗̂βA ·B⃗ðCÞÞ ⃗̂βAþð ⃗̂βA×E⃗ðCÞÞ�,

we find that the interaction Hamiltonian HðAÞ
int is trans-

formed to

HðCÞ
int ¼ μγ̂−1A

⃗ŜΛðB⃗ðAÞÞ · ⃗Ξ̂: ð6Þ

It is straightforward to check that the direction of
⃗ŜΛðB⃗ðAÞÞ is also n⃗; therefore the deflection of the particle
in the laboratory frame happens in the same direction as in
the rest frame. Notice that, since both the quantum state and
the observables transform unitarily, probabilities are auto-
matically conserved after the change of QRF. In particular,
if in the rest frame of the particle A the Stern-Gerlach
measurement detects that the spin is “up” with probability
one, the “relativistic Stern-Gerlach” experiment in the
laboratory frame with the interaction Hamiltonian of
Eq. (6) will also detect “spin up” with probability one.
Note that the specific form of the electromagnetic field in
Eq. (6) is not crucial to our result, but we can design the
coupling between the particle and the electromagnetic field
according to our experimental capabilities in each reference
frame. However, it is crucial that the electromagnetic field

couples to the operator ⃗Ξ̂, unlike in the standard Stern-
Gerlach experiment. In the Supplemental Material [35], we
set up a different experiment, where we couple an inho-
mogenous magnetic field in the laboratory frame to give an
explicit analysis of a relativistic Stern-Gerlach experiment.
It is worth noting that the interaction Hamiltonian of

Eq. (6) is covariant, because the quantity H0 ≔ γ̂AH
ðCÞ
int

transforms like the zero component of a 4-vector.
Therefore, the Schrödinger equation in the reference frame

of A, iℏðd=dtAÞjψiðAÞÃC
¼ HðAÞ

int jψiðAÞÃC
, where tA is the proper

time in the rest frame of A, is mapped to iℏðd=dtCÞjψiðCÞÃA
¼

HðCÞ
int jψiðCÞÃA

, where tC is the proper time in the rest frame of
C and the relation tC ¼ γ̂AtA holds. The general, manifestly
covariant expression of H0 is

H0 ¼ 1

2
η0ρϵρμνλΣ̂

μ
pAF

νλ; ð7Þ

where ημν ¼ diagð1;−1;−1;−1Þ is the Minkowski metric,
Fνλ is the electromagnetic tensor, and ϵρμνλ is the totally
antisymmetric tensor such that ϵ0123 ¼ 1.
In order to complete the measurement, we now have to

project the position of the particle along the z direction.
Formally, this is achieved by defining the two operators

Π̂ðAÞ
þ ¼ Rþ∞

0 dzcjzCiChzCj and Π̂ðAÞ
− ¼ R

0
−∞ dzcjzCiChzCj,

distinguishing whether the particle is, respectively,
deflected upwards or downwards. For a thorough analysis
of a concrete detection of spin via the “relativistic Stern-
Gerlach experiment” proposed here and more details on the
measurement, see Supplemental Material [35].

FIG. 2. The relativistic Stern-Gerlach experiment as seen from
the QRF A (above) and from the QRF C (below). In the rest frame
of particle A, the spin is operationally defined via the Stern-
Gerlach experiment. To measure spin along direction n⃗ the spin
(Pauli operator) σ⃗ is coupled to an inhomogeneous magnetic field
oriented along n⃗. The particle is then deflected towards the
direction n⃗ and −n⃗ corresponding to outcome spin up and spin
down, respectively. When transforming to the laboratory frameC,
the magnetic field and the spin transform with a superposition of
Lorentz boosts for v1 and v2. The interaction Hamiltonian is also
transformed, giving rise to a coupling between the transformed

vector S⃗ΛðB⃗ðAÞÞ¼γ̂A½B⃗ðCÞ−γ̂A=ðγ̂Aþ1Þð ⃗̂βA ·B⃗ðCÞÞ ⃗̂βAþð ⃗̂βA×E⃗ðCÞÞ�
aligned in the same direction n⃗ as the magnetic field in the rest
frame, and the transformed spin operator Ξ⃗. The particle is again
deflected either to n⃗ or −n⃗ corresponding to the outcome “spin
up” and “spin down”, respectively. The probability of detecting
the outcomes “spin up” and “spin down” is preserved under
change of QRF.
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The QRF transformation provides the description of the
same experiment from the point of view of two different
QRFs, which move in a superposition of velocities
relative to each other. This treatment of the relativistic
Stern-Gerlach experiment makes it possible to associate
an operational meaning to the spin of a relativistic
quantum particle, thus solving the problem of encoding
quantum information in a particle with spin d.o.f. as in
a qubit.
Conclusions.—In this Letter, we have provided an

operational description of the spin of a special-relativistic
quantum particle. Such an operational description is hard to
obtain with standard methods due to the combined effect of
special relativity, which makes the spin and momentum not
separable, and quantum mechanics, which makes it impos-
sible to jump to the rest frame with a standard reference
frame transformation. We have introduced the “super-
position of Lorentz boosts” transformation to the rest frame
of a quantum particle, moving in a superposition of
relativistic velocities from the point of view of the labo-
ratory. We have found how the state transforms under such
a quantum reference frame transformation and identified a
set of observables in the laboratory frame which satisfies
the suð2Þ algebra and has the same eigenvalues as the spin
in its rest frame. In addition, this set complies with the
desiderata for a relativistic spin operator in Ref. [24]: it
commutes with the free Dirac Hamiltonian, it satisfies the
suð2Þ algebra, and it has the same eigenvalues as the spin
in its rest frame. In addition, it has the correct non-
relativistic limit. It can be easily shown, in fact, that our

operator ⃗Ξ̂ coincides with the Foldy-Wouthuysen spin
operator [29,30]. Thanks to the unitarity of the trans-
formation, probabilities are the same in the rest frame
and in the laboratory frame. Finally, we have generalized
the Stern-Gerlach experiment to the special-relativistic
regime by means of a transformation of the interaction
Hamiltonian from the rest frame to the laboratory frame.
Such generalization opens up the possibility of performing
quantum information protocols with spin in the special-
relativistic regime.
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