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Spontaneous symmetry breaking (SSB) is responsible for structure formation in scenarios ranging from
condensed matter to cosmology. SSB is broadly understood in terms of perturbations to the Hamiltonian
governing the dynamics or to the state of the system. We study SSB due to quantum monitoring of a system
via continuous quantum measurements. The acquisition of information during the measurement process
induces a measurement backaction that seeds SSB. In this setting, by monitoring different observables, an
observer can tailor the topology of the vacuum manifold, the pattern of symmetry breaking, and the nature
of the resulting domains and topological defects.
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Spontaneous symmetry breaking (SSB) occupies a
central stage in modern physics [1]. It governs physical
mechanisms such as BCS superconductivity, the existence
of Nambu-Goldstone bosons [2,3], and the generation of
mass via the Higgs mechanism [4–6]. It is also considered
to play a key role in the early history of the Universe [7,8],
and may have contributed to structure formation in this
context [9]. Symmetry breaking arises in nature when
observable phenomena lack the symmetry of the under-
lying physical laws dictating them. A system can thus be
found in configurations in conflict with the invariance
manifested by its equations of motion.
SSB is characteristic of phase transitions from a high-

symmetry phase to a lower symmetry phase in which a new
kind of macroscopic order emerges, that can be detected
by an order parameter [10]. In a specific system, SSB is
analyzed through the symmetries of its free energy land-
scape or field Eq. [9]. An intuitive understanding of the
spontaneous rupture of symmetry is acquired by picturing a
spin chain initially prepared in a paramagnetic phase and
driven by a Hamiltonian H ∝ −

P
j σ

z
jσ

z
jþ1, which favors

ferromagnetic order. The ensuing dynamics preserves the
symmetries of the Hamiltonian, and in the absence of
external perturbations nothing in the evolution biases the
choice between the degenerate ground states j↑↑…↑↑i and
j↓↓…↓↓i. However, in the thermodynamic limit any
infinitesimal external magnetic field is enough to break
the tie, and single out one of these states as the observed
ground state. In this case the symmetry is explicitly broken.
In physical systems of finite size, the breaking of the
symmetry can be generally understood as a consequence of
random fluctuations, either in the Hamiltonian governing

the evolution, or in the state of the system at a given time. In
the example of the spin chain driven from the symmetric
paramagnetic phase, a local perturbation of the magneti-
zation is enough to implant a seed that leads to symmetry
breaking along the whole system. Whenever present,
spatial fluctuations of the magnetization can thus favor
the local growth of domains where spins align in a certain
direction. This example serves to illustrate the general
physical mechanism of domain formation.
A characteristic feature of the canonical description of

SSB is its focus on static features: it is understood via the
properties of the state of the system in thermal equilibrium.
This approach is frequently pursued using elements of
homotopy theory to characterize the topology of the
vacuum manifold, spanned by the degenerate ground states
in the broken-symmetry phase [9,11].
In this Letter, we study an alternative mechanism for

symmetry breaking, induced by the continuous monitoring
of a quantum system. During the monitoring by continuous
quantum measurements, symmetry breaking is induced by
the quantum measurement backaction [12] associated with
the acquisition of information by the observer. The latter
can thus alter the topology of the vacuum manifold and the
pattern of symmetry breaking. By selecting different kinds
of measurements, an observer can thus control the nature of
the resulting domains and topological defects, and even
achieve a complete suppression of the later.
Monitoring-induced symmetry breaking.—For the sake

of illustration, we consider N 1=2 spins prepared in the
ground state of a paramagnetic Hamiltonian H0 ¼
−Λ

P
N
j¼1 σ

x
j , where Λ represents a global energy scale.

The initial state of the chain is then
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jΨð0Þi ¼ ⊗
N

j¼1
j→ij; ð1Þ

where j→ij denotes the eigenstate of σxj with eigenvalue 1.
Following a sudden quench at t ¼ 0, the system evolves for
t > 0 according to the ferromagnetic Hamiltonian

H ¼ −Λ
XN
j¼1

σzjσ
z
jþ1; ð2Þ

taking periodic boundary conditions σzNþ1 ≡ σz1 for
concreteness.
The initial state of the chain shares a symmetry of the

Hamiltonian, which is preserved in the case of unitary
evolution. This can be easily seen, for instance, by noting
that the Hamiltonian commutes with the magnetization
M ¼ P

j σ
z
j of the chain. In the adiabatic limit, since the

initial state satisfies hΨð0ÞjMjΨð0Þi ¼ 0, the subsequent
evolved state necessarily has equal weights on the states
j↑↑…↑↑i and j↓↓…↓↓i, and is therefore incapable of
selecting between them. However, experience shows that in
practice a particular direction for the chain’s magnetization
is spontaneously chosen by the system, even if the
Hamiltonian and initial state are symmetric with respect
to the z direction. In a sudden quench scenario, excitations
in the system are constrained by the conservation law
hΨðtÞjMjΨðtÞi ¼ 0. The symmetry is broken locally with
the formation of domains in which spins are homo-
geneously polarized along a given direction (up or down)
and the formation of topological defects at the interface
between adjacent domains. In the example at hand, the
latter are the so-calledZ2 kinks, as the brokenZ2 symmetry
is restored at their core. In the canonical approach to
symmetry breaking, domain formation is explained by
assuming a small perturbation to the Hamiltonian or to
the state of the system, locally breaking the symmetry
“by hand.”
We consider an alternative SSB scenario that results from

monitoring a quantum system during time evolution. Such
quantum monitoring can be modeled by continuous quan-
tum measurements [13–15], which can be thought of as a
sequence of infinitesimally weak measurements. More
specifically, they arise as the consequence of a weak
coupling between the system being measured and an
apparatus that gets entangled with the state of the system.
Upon observing a particular outcome in the measurement
apparatus the joint state is collapsed. In contrast to strong
projective measurements, which can drastically perturb the
state of the system, a weak measurement provides only
partial information of the state. In doing so, this process
induces a mild backaction on the state of the system at any
given time. The collective information obtained from the
continuous measurement record over a period of time can
provide full information of the system though [16], and can

thus serve as a way to perform full state tomography
[17,18], parameter estimation [19,20], quantum error cor-
rection [21], and quantum control [22]. Note that the action
of the observer is in practice tantamount to the coupling
to a monitoring environment, whenever the latter weakly
interacts with the system of interest in such a way that
information of a physical quantity is probed and registered
[23]. The relation between quantum dynamics,
decoherence, and SSB have been studied in the past
[24,25]. Particular aspects of the connection between
quantum measurement and symmetry breaking have been
considered, mostly as an effective description to explain
the interference fringes in Bose-Einstein condensates and
superfluids [26–32]. In what follows we focus on the
agency of the observer to control symmetry breaking via
the selection of the continuous measurement, i.e., the
observable that is monitored. In particular, we shall discuss
symmetry breaking induced by the monitoring of local,
coarse-grained and global observables.
The dynamics of the system undergoing continuous

monitoring of an arbitrary set of observables fAαg is well
described by a stochastic master equation dictating the
change in the state,

dρt ¼ L½ρt�dtþ
X
α

Iα½ρt�dWα
t ; ð3Þ

when expressed in Itô form [14,15]. Here, L½ρt� takes the
standard Lindblad form for the set of measured operators,
which includes the evolution due to the Hamiltonian and
dephasing due to the monitoring process:

L½ρt� ¼ −i½H; ρt� −
X
α

1

8ταm
½Aα; ½Aα; ρt��: ð4Þ

In turn, the “innovation terms”

Iα½ρt� ¼
ffiffiffiffiffiffiffiffi
1

4ταm

s
½fAα; ρtg − 2TrðAαρtÞρt� ð5Þ

account for the change in the state of the system due to the
acquisition of information during the measurement process.
These innovation terms encompass the effect of the back-
action on the state of the system due to the quantum
measurement. Here, dWα

t denote independent Gaussian
random variables of mean 0 and width dt, while ταm is the
“characteristic measurement time” with which observable
Aα is monitored; i.e., it provides the timescales over which
information of the expectation value of the observable is
acquired. The output of such measurements over an interval
dt, given by drαðtÞ ¼ hAαiðtÞdtþ

ffiffiffiffiffi
ταm

p
dWα

t , provides
information of the expectation value of the observables,
hidden by additive white noise [13–15]. The time evolution
is unraveled by modeling continuous measurements with a
sequence of infinitesimally weak measurements, which can
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be described by Kraus operators acting on the state at every
time step dt of the evolution; see, for example, [13]. In
the limit of dt smaller than any other relevant timescales,
such an approach gives the same dynamics as Eq. (3). All
simulations are performed in QUTIP [33,34].
We shall focus on the local, coarse-grained, and global

magnetization as the choice of monitored observables. To
start with, assume that independent observers continuously
monitor the single-spin components fσzjg of individual
spins along the chain, as illustrated in Fig. 1(a). The
dynamics is dictated by Eq. (3), with fσzjg (j ¼ 1;…; N)
as the set of measured observables fAαg.
This scenario makes apparent the connection between

the dynamics under continuous measurements and that of
an open system in contact with an environment. Observers
without access to the measurement output, who need to
average over the unobserved measurement outcomes,
obtain an averaged description of the state of the system
ρmt . The latter evolves according to dρmt ¼ L½ρmt �dt, and its
evolution is thus identical to that of the system coupled
to an environment through the spin components fσzjg.

Importantly, such density matrix does not show signs of
symmetry breaking, given that the evolution commutes
with the magnetization. That is, without registering the
measurement outcomes and in the absence of any further
perturbations to Hamiltonian or state, symmetry is fully
preserved. In particular, the spin components hσzjiðtÞ ¼
Trðρmt σzjÞ remain constant.
By contrast, the measurement process does break the

symmetry, forcing individual spins to collapse to one of
the eigenstates of σzj. Indeed, when conditioning the state to
the observed outcomes the measurement backaction
breaks the symmetry in individual realizations. To prove
this, let us focus on the evolution of the component of spin j
in the ferromagnetic part of the quench, with t ≥ 0. The
evolution of the expectation value of the spin components is
dictated by

dhσzjiðtÞ ¼ −TrðI½ρt�σzjÞdWj
t

¼ −

ffiffiffiffiffi
1

τm

s
Δ2

σzj
ðtÞdWj

t ; ð6Þ

where the trace h·iðtÞ≡ Trðρt·Þ is taken with respect to the

state ρt, and Δσzj
ðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðσzjÞ2iðtÞ − hσzji2ðtÞ

q
is the corre-

sponding standard deviation. This means that, due to
quantum monitoring, the spin component evolves when-
ever its quantum uncertainty is nonzero. Such uncertainty is
zero if and only if the spin is in one of the eigenstates j↑ij
or j↓ij of σzj. Therefore, only states with definite values
of the spin component are stable under monitoring. SSB
is thus a consequence of the measurement backaction
encoded in the innovation terms Ij½ρt� in Eq. (5).
Effectively, monitoring the spin components breaks

the symmetry in the chain, in the basis selected by the
measurement process, as illustrated in Fig. 2. The charac-
teristic measurement time τm dictates the rate at which
symmetry breaking occurs and individual spins collapse up
or down. The stochastic dynamics naturally leads to the
formation of localized topological defects [11], Z2 kinks,

FIG. 1. From single spin to coarse-grained monitoring. The
nature of the monitoring process determines the pattern of
measurement-induced symmetry breaking, deciding the size of
the domains, the distribution of the local magnetization, and the
type of topological defects formed in the system. (a) Independent
observers measuring each single spin induce random, indepen-
dent measurement outcomes for each spin, which end up either
“up” or “down.” (b) Independent observers measuring the
magnetization of clusters of spins provoke the formation of local
and independent domains, which can take different values of the
magnetization. (c) In the limiting case of one single observer
measuring the whole spin chain, the induced global magnetiza-
tion due to quantum monitoring is homogeneous.

FIG. 2. Dynamics of symmetry breaking induced by monitoring of each spin for different measurement strengths. (a) A weak
monitoring of the individual spins slightly affects their spin components, barely perturbing the otherwise symmetric evolution. (b) As the
measurement strength is increased symmetry is broken by the measurement process, leading to spins collapsing to the stable up or down
configurations. (c) A strong monitoring process rapidly leads to the formation of localized topological defects in individual realizations
of the stochastic evolution.
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from the sole effect of the quantum measurement back-
action due to the monitoring of the spin chain.
The previous analysis applies to a sudden quench in the

dynamics. We now consider the scenario of a slow
transition from a paramagnetic to a ferromagnetic regime,
with a time-dependent Hamiltonian

HðtÞ ¼ −Λ
�
1 −

t
τQ

�XN
j¼1

σxj − Λ
t
τQ

XN
j¼1

σzjσ
z
jþ1; ð7Þ

where τQ is a timescale that dictates completion of the
quench. For times t ≥ τQ we assume HðtÞ ¼ HðτQÞ. In
contrast to sudden quenches, the finite-time crossing of the
critical point reduces excitations, favoring dynamics con-
strained to the lowest energy subspace [35]. However,
without access to measurement outcomes nothing in the
dynamics breaks the symmetry between degenerate ground
states of the ferromagnetic Hamiltonian. The monitoring
of the system feeds in a seed of asymmetry, as Fig. 3
illustrates. In this case there is a competition between
monitoring backaction, which singles out individual spins,
and the natural tendency of the system to remain excita-
tionless due to adiabatic dynamics. Domains with different
definite values of magnetization form, with a size that
depends on measurement strength and quench time [36].
The measured observable is also crucial in determining

the nature of the symmetry breaking, and in particular, in
governing structure formation in the end state. To illustrate
this, we analyze the case in which a coarse-grained local
magnetization is probed on the chain. Let us then consider
that, instead of monitoring each individual spin component
as in Fig. 1(a), the local magnetization over clusters of K
consecutive spins is continuously measured, as on Fig. 1(b).
We denote local magnetization observables by

mα ¼
X
j∈Iα

σzj; α ¼ f1;…; N=Kg; ð8Þ

where Iα ¼ ½Kðα − 1Þ þ 1; Kα�.
Once again, symmetry is broken by the monitoring

process, given that dhmαiðtÞ¼−
ffiffiffiffiffiffiffiffiffiffi
1=τm

p
Δ2

mα
ðtÞdWα

t , where
Δmα

ðtÞ denotes the standard deviation of the monitored
coarse-grained magnetization. In this case, the stable states
to which the measurement process leads, eigenvectors of
the set of measured observables fmαg, are starkly different,
given that each spin cannot be singled out by the meas-
urement process. Such eigenstates have definite values of
the magnetization, λm ¼ f−K;−K þ 1;…; K − 1; Kg, on
each of the coarse-grained regions. This causes a symmetry
breaking with nonuniform magnetization along the chain,
but homogeneous behavior within individual spin clusters,
as illustrated in Fig. 4(a). The resulting domains involve
coherent quantum superpositions and have no classical
counterpart. Further, a topological defect formed at the
interface between such quantum domains is no longer
restricted to the type of Z2 kinks, but can result from a
discontinuity in the local magnetization between any two of
its (K þ 1) possible values. Monitoring the coarse-grained
magnetization broadens the class of topological defects to
ZKþ1 kinks, with the value of K being controlled by the
observers.
An interesting limiting case concerns the choice K ¼ N,

that corresponds to the monitoring of a single observable,
the global magnetization M ¼ P

j σ
z
j of the spin chain,

illustrated in Fig. 1(c). In this scenario, the final state in the
broken phase has very different properties from the case in
which spin clusters are monitored. As shown in Fig. 4,
it results in a homogeneous magnetization along the
chain, facilitating the growth of a single quantum domain,

FIG. 3. Monitoring-induced symmetry breaking for a slow
quench. A system undergoing a slow quench (1=τQ ≪ Λ) tends
to remain close to the ground state, but in the absence of
monitoring and other sources of symmetry breaking the system
cannot select between degenerate ferromagnetic ground states
j↑↑…↑↑i and j↓↓…↓↓i. (a) A strong monitoring of the
individual spins (1=τm ∼ 1=τQ ≪ Λ) generates a symmetry bro-
ken state where spins are uncorrelated. (b) A weak monitoring
(1=τm ≪ fΛ; 1=τQg) leads to an almost uniform domain, and a
final state that is close to one of the possible symmetry-broken
ground states of the ferromagnetic Hamiltonian.

FIG. 4. Evolution of hσzji for coarse-grained measurements.
(a) The continuous monitoring of the coarse-grained local
magnetization breaks the symmetry, resulting in the formation
of independent domains. For independent observers monitoring
the local magnetization over the spin chain, the typical size of
the domains is determined by the number of spins K over
which the independent measurement operators mα act on. More-
over, the stable final states within each domain need not
correspond to all spins pointing up or down, as mα can take
(K þ 1) different values. (b) In the extremal case of one observer
monitoring the global magnetization, a single domain is formed.
The nature of the monitoring process thus governs structure
formation in the final state.
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possibly including coherent quantum superpositions of
spins with different components in the z axis. In this case,
a complete suppression of topological defects is achieved.
By comparing the different choices of fAαg, we further
conclude that the structure of states in the broken symmetry
phase provides information of the nature of the monitoring
process.
Discussion.—We have studied the breaking of symmetry

induced by the measurement backaction resulting from
continuous measurements performed on the system of
interest. In this context, we have emphasized the agency
of the observer to control symmetry breaking. In particular,
we have analyzed the dynamics of a monitored many-body
spin chain and identified strikingly different physics
depending on the nature of the monitored observables.
The individual monitoring of spins is consistent with a
classical description and results in spins with definite up
or down states, randomly assigned. By contrast, the use of
local coarse-grained measurements of the local magneti-
zation of clusters of spins leads to quantum domains
characterized by coherent quantum superpositions, broad-
ening the class of topological defects that the system can
exhibit. Further, when a global magnetization is monitored,
symmetry can be broken while the formation of topological
defects is fully suppressed. Thus, an observer can control
the patterns of symmetry breaking by a choice of the
measurement observables. This choice determines the
nature of the final state in the broken symmetry phase,
including the size and kind of domains, and the statistics of
the magnetization. In such a scenario, the classification
of the resulting topological defects is no longer described
by the symmetries of the system Hamiltonian, e.g., using
homotopy theory [9,11]. The nature of the domains
produced in this setting provides information of the
monitoring process. In a broader context, the measurement
backaction is expected to govern pattern formation.
Notably, the engineering of the patterns of symmetry
breaking by continuous monitoring is amenable to exper-
imental test in superconducting qubit platforms with
current technology [39,40]. It also opens up the possibility
of using quantum control methods [41–47] to tailor the end
state in the broken-symmetry phase.
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