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Scaling arguments used to predict the radius of gyration of passive self-avoiding flexible polymers have
been shown to hold for polymers under the influence of active fluctuations. In this Letter, we establish how
the standard blob scaling theory representation of a polymer, capable of capturing the essential physics of
passive polymers under a variety of settings, breaks down when dealing with active polymers under
confinement. Using numerical simulations, we show how the predicted exponents associated to the forces
applied by a polymer when restricted within cavities of different geometries hold only whenever the
persistence length generated on the polymer by the active forces is much smaller than the size of the
characteristic blob in the scaling theory.
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The way biological filaments organize within the cellular
milieu is of critical importance for the proper functioning of
the cell, and it is responsible for numerous processes
including, among other things, cellular subdivision and
cell migration. The dynamics of biopolymers such as actin
filaments and microtubules is regulated by the availability,
or lack thereof, of ATP or GTP, which are energy sources
capable of powering their growth and locomotion. These
biological filaments are beautiful examples of active
systems. This is an umbrella term used to indicate all
those biological [1] or synthetic systems containing com-
ponents that can be driven far from equilibrium by
exploiting local chemical, electrical, or thermal gradients
[2]. Over the last decade, several synthetic active systems
have been developed and allowed for a systematic study of
their properties in the context of complex fluids. Several
reviews have been dedicated to the theoretical and exper-
imental studies of colloidal active matter [3–8], with a few
reviews focusing on more specific topics such as motility-
induced phase separation (MIPS) [9,10], Viscek models
[11], charged particles [12], self-assembly strategies [13],
and mechanisms of locomotion [14].
Because of their biological implications and their role as

a minimal model where the competition between thermal,
elastic, and active forces can be easily and systematically
studied, active filaments have become the subject of intense
scrutiny over the last few years [15–28] (see also [29] for a
brief review on the subject and references therein).
Specifically, two distinct variations of these systems have
been put forward: one where the active forces are locally
aligned to the backbone of the polymer, and another where
each monomer is treated as an independent active
Brownian particle and the direction of the active forces
is allowed to randomly rotate within the backbone of the

polymer. The first model was proposed to describe the
collective behavior and pattern formation observed in
systems of actin filaments activated by molecular motors
(see, for instance, [30,31]) or strings of Janus dipolar
particles [32], whereas the second model has been designed
to mimic the behavior of a passive filament subject to the
random fluctuations of an embedding active fluid. In this
Letter, we focus exclusively on the statistical properties of
the second type of active polymer.
Interestingly, it has been shown [20] that the radius of

gyration, Rg, of an active filament of a fixed number of
monomers N has a nonmonotonic dependence on the
strength of the active forces for self-avoiding chains. An
initial compression of the polymer for intermediate active
forces is followed by a reexpansion at large activities.
Analytical results for an ideal polymer were also presented
in [20], and they indicate that the effect of the activity can be
simplymapped into an effective temperature.However,more
recently, it was argued [22] that a more complex nonlinear
dependence of the end-to-end distance of the polymer should
hold even for ideal chains. Nonetheless, for a fixed active
force,Rg is expected to follow theFlory scaling law exhibited
by its passive counterpart when plotted as a function ofN (at
least for Péclet numbers that are not too large). Recent
numerical simulations have indicated that the equilibrium
size scaling for the radius of gyration of the polymer also
holds for self-avoiding flexible chains in both 2D[20] and3D
[27]. Specifically, Rg ∼ Nν, with ν ¼ 3=ðdþ 2Þ [33]. Here,
d is the dimension of the embedding space. This is a
remarkable and highly nontrivial result because it suggests
that the standard blob scaling theories used to understand the
statistical properties of passive polymers could, in principle,
be employed to also understand the behavior of polymers
subject to random active fluctuations.
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In this Letter, we test the limits of this assumption.
Specifically, we focus on the well-established scaling laws
for passive self-avoiding polymers under confinement (see
[34–40] and references therein), and we discuss to what
extent the results obtained for an unconstrained active
filament hold when confinement is added to the picture.
One of the predictions of the blob scaling theory is that the
free energy cost required to confine a flexible self-avoiding
polymer composed of N monomers within a cylindrical
pore scales as ΔF ∼ ðRg=RÞ1=ν. When considering a con-
finement within a spherical cavity, the free energy scales as
ΔF ∼ ðRg=RÞd=ðdν−1Þ. It is well known that free energies
cannot be consistently defined in active systems; yet, their
derivatives, i.e., pressures and forces the polymer exerts on
confining boundaries, can be easily measured. Using
numerical simulations, we show how these scaling laws
hold for relatively weak activities and moderate degrees of
confinement, but they break down when considering active
polymers under confinement in two and three dimensions;
this suggests that the blob scaling picture that can be
used ubiquitously for passive polymers cannot always be
straightforwardly exported to active systems when con-
straining their fluctuations.
Our model for a flexible, active self-avoiding polymer

consists of N monomers of diameter σ linearly connected
with harmonic springs and subject to thermal and active
forces. In this study, we consider active polymers in both
two and three dimensions. Every monomer undergoes
active Brownian dynamics at a constant temperature T
according to the following translational and rotational
equations of motion:

drðtÞ
dt

¼ 1

γ
f ðfrijgÞ þ vpq̂ðtÞ þ

ffiffiffiffiffiffiffi

2D
p

ξðtÞ ð1Þ

dq̂ðtÞ
dt

¼
ffiffiffiffiffiffiffiffi

2Dr

p

ξrðtÞ × q̂ðtÞ ð2Þ

where self-propulsion is introduced via a directional pro-
pelling velocity of constant magnitude vp and is directed
along a predefined orientation unit vector q̂ centered at
the origin of each monomer. The translational diffusion
coefficient D is related to the temperature and the transla-
tional friction γ via the Stokes-Einstein relation D ¼
kBTγ−1. Likewise, the rotational diffusion coefficient
Dr ¼ kBTγ−1r , with Dr ¼ 3Dσ−2. The solvent induced
Gaussian white-noise terms for both the translational ξ
and rotational ξr motions are characterized by hξðtÞi ¼ 0

and hξiðtÞξjðt0Þi¼δijδðt−t0Þ. f ðfrijgÞ indicates the excluded
volume and the harmonic forces holding the polymer
together. The excluded volume between the monomers is
enforced via a Weeks-Chandler-Andersen (WCA) potential
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Here, ε ¼ 1kBT. Harmonic bonds of the form Ub ¼
kðjri;iþ1j − σÞ2 ensure chain connectivity. Here, ri;iþ1 is
the distance between consecutive monomers along the
chain, and k ¼ 400kBT is set to be large enough to ensure
polymer connectivity while simultaneously minimizing
bond stretching that could arise from the action of the active
forces.
When considering spherical, or the equivalent circular

confinement in two dimensions, each monomer also
experiences a force due a WCA-like potential centered
around the origin and of radius λ, which is of the form

Uðλ − jrijÞ ¼ 4ε
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This potential extends up to ðλ − jrijÞ ¼ 21=6σ. With this
setup, each monomer feels a repulsive energy from the wall
of kBT when jrij ¼ λ − σ. The effective confinement
radius, R, is therefore defined as R ¼ ðλ − σÞ þ σ=2, where
the term σ=2 is added to account for the finite size of the
monomers. An identical potential is used when enforcing
planar confinement, with the only difference that jrij is
replaced with jhij, which is the component of the particle
position vector that is perpendicular to the confining plane.
In our simulations, σ and kBT are used as the units of length
and energy scales of the system, whereas τ ¼ σ2D−1 is our
unit of time. All simulations were typically run for at least
109 iterations, with a time step ranging from Δt ¼ 10−4τ to
Δt ¼ 5 × 10−5τ. To quantify the strength of the active
forces, it is useful to introduce the dimensionless Péclet
number, defined as Pe ¼ vpσ=D, and the characteristic
persistence length of the active path lp ¼ vp=Dr.
We began our simulations by measuring the radius of

gyration of active polymers in two dimensions for a range
of numbers of monomers going from N ¼ 64 to N ¼ 1024,
and we found a scaling exponent of ν ¼ 0.74ð3Þ, which
was consistent with the one expected by the Flory theory of
νF ¼ 3=4 [33] for a set of Péclet numbers ranging from 10
to 80. Next, we considered the confinement of a two-
dimensional (d ¼ 2) active polymer and a three-dimen-
sional (d ¼ 3) active polymer between two parallel plates at
a distance 2R from each other and within an infinitely long
cylindrical channel of radius R, respectively. As discussed
above, the free energy associated to the confinement of
such polymers is expected to scale as ΔF ∼ kBTðRg=RÞ1=ν.
If this scaling equation holds, then the force the polymer
exerts on the constraining walls or cylinder should scale as
fw ¼ −∂ΔF=∂R ∼ R−α, where α is expected to be equal
to (1=νþ 1).
To test this scaling assumption, we performed a series of

simulations for different degree of confinement R and a
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range of values of vp. The results are shown in the log-log
plots in Figs. 1 and 2, corresponding to polymers in two and
three dimensions, respectively. Here, we plotted how the
force, fw, exerted by an active polymer depends on the
degree of confinement R for different activities, Pe.
Our results show unequivocally how the predictions

from the blob scaling theory fail to describe the behavior of
active polymers under confinement. The results also show
that a new length scale, which is irrelevant for the scaling
behavior of an unbounded active polymer, emerges when
confinement is imposed upon the polymer, namely, lp.
More specifically, the ratio lp=R controls the behavior of

the system. In fact, we find that the dependence of the force
with the degree of confinement does not have a simple
power law behavior but appears to be properly described by
two distinct power laws connected by a crossover region. In
the first regime, when lp=ð2RÞ ≪ 1, the active polymer
behaves consistently with the behavior expected from the
parent passive system, albeit with a prefactor that depends
on the Péclet number. In the second regime, when
lp=ð2RÞ > 1, large deviations ensue. Here, the data are
still properly described by a power law; however the
associated exponent α becomes systematically smaller as
the strength of the active forces increases. Interestingly, the
decay of α with Pe is sharper for the three-dimensional
polymer within the cylinder than for its two-dimensional
counterpart between the two walls. This is clearly visible
when comparing the insets of Figs. 1 and 2. We believe that
this is because the free energy cost required to confine or
compress a two-dimensional passive polymer is larger than
that required to compress (to the same degree of confine-
ment, R) a three-dimensional polymer with the same
number of monomers. In fact, it can be readily shown
[using, for simplicity, ν ¼ 3=ðdþ 2Þ] that ΔF2d=ΔF3d ≃
ðR=σÞ1=3 for planar confinement and ΔF2d=ΔF3d ≃
N1=2ðNσ=RÞ1=4 (with Nσ > R) for an isotropic compres-
sion, making the three-dimensional polymer effectively
softer and more susceptible to the action of the active
forces. Figure 3 shows typical configurations of the
polymer confined between two rigid walls when
lp=ð2RÞ ≪ 1 (top) and for lp=ð2RÞ > 1 (bottom). In the
first case, the polymer is not strongly affected by the active
force and behaves effectively as a passive polymer at a
higher temperature. In the second case, the polymer
acquires conformations that can be best described as a
mixture of collapsed configurations followed by fully
stretched segments. Such highly dynamic heterogeneous
conformations are clearly not amenable to be treated with
the standard blob scaling representation, postulating that a
linear polymer can be described as a sequence of blobs of
radius R; inside of which, the monomers are essentially
unperturbed by the confinement forces and satisfy the bulk
polymer statistics [38].
Analogous results are obtained when considering an

active two-dimensional polymer confined within a circular
cavity of radius R. According to the blob scaling theory, the
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FIG. 1. Force exerted by an active polymer confined between
two parallel walls at a distance 2R from each other for different
Péclet numbers. The dashed line shows the expected dependence
for the passive system α ≃ 2.33. The straight lines are fit to the
data in the activity-dominated regime. The inset shows how the
corresponding exponent α depends on Pe.

FIG. 3. Typical configurations for active polymers confined
between two walls at a distance 2R from each other, with
R ¼ 15.5σ. The top image refers to an active polymer with
Pe ¼ 2, whereas the bottom image refers to the same polymer
with Pe ¼ 80
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FIG. 2. Force exerted by an active polymer confined within a
cylinder of radius R for different Péclet numbers. The dashed line
shows the expected dependence for the passive systemα ≃ 2.7. The
straight lines are fit to the data in the activity-dominated regime.
The inset shows how the corresponding exponent α depends on Pe.
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pressure exerted by a passive polymer on the boundary of
the cavity is expected to scale as P ∼ ρμ, where ρ is the
density of monomers inside the cavity and the exponent for
the passive system is expected to be μ ¼ dν=ðdν − 1Þ. In
this case, the size of the blob is equal to the correlation
length ξ ∼ ½R2=ðσ2NÞ�μ=d. We therefore expect, consistent
with our results shown in Fig. 4, deviations from the
standard scaling theory for ðlp=ξÞ > 1. Notice that, because
ξ is much smaller than R for even moderate degrees of
confinement, already, when Pe ¼ 25, most of the data
points (obtained with a polymer of N ¼ 1024 monomers)
are within the activity-dominated regime; and no crossover
from an effective passive behavior is even detectable. In
conclusion, we studied under what conditions the blob
scaling theory is applicable to active polymers under
confinement. Our results suggest a breakdown of the
scaling predictions as soon as lp becomes larger than the
size of the smallest unperturbed blob in the polymer
representation. In this regime, the forces or pressures
applied on the confining geometries have a power law
behavior that becomes dependent on the Péclet number.
The associated scaling exponents systematically decrease
upon increasing Pe. Given the conformations of the active
polymer inside the cylinder (see Fig. 3), it is tempting to
map it into a passive semiflexible polymer with an effective
persistence length of P ∼ lp. In the strong confinement
regime, the free energy cost to force such a polymer within
a cylindrical pore of radius R scales as ΔF ∼ kBTNσ=λ,
where λ ∼ P1=3R2=3 is the average distance between suc-
cessive deflection points of the chain in the pore [41]. This
would lead to an average force applied to the cylinder that
scales as fw ∼ R−5=3. This exponent is inconsistent with our
results. In fact, we observe a significantly weaker

dependence of fw on R for large Pe. Although we have
not driven our system to extreme activities, it is well known
that, in this limit, the force exerted by a single active
particle on the surface of a container of lateral dimension R
scales as fw ¼ γvp exp½−R=ð2lpÞ� [42,43] so that fw is
only weakly dependent on R when ðR=lpÞ → 0. This is
because the time spent by a particle on the surface applying
a force becomes much larger than that required to cross the
dimension of the confining cavity in the large vp limit, and
it is not implausible to also expect a similar behavior for our
system. Indeed, in this limit, we expect that the major
contribution to the forces on the boundaries should be due
to the active forces rather than to entropic confinement, thus
making the radius of the cavity less and less relevant.
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