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We provide a framework for understanding the gapless Kitaev spin liquid (KSL) in the language of
the tensor network (TN). Without introducing a Majorana fermion, most of the features of the KSL,
including the symmetries, gauge structure, criticality, and vortex freeness, are explained in a compact TN
representation. Our construction reveals a hidden string gas structure of the KSL. With only two variational
parameters to adjust, we obtain an accurate KSL Ansatzwith the bond dimensionD ¼ 8 in a compact form,
where the energy is about 0.007% higher than the exact one.
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Introduction.—Quantum spin liquids represent a state of
quantum matter which is not characterized by any local
order parameters even at zero temperature. These novel
states are expected to exhibit long-range entanglement
leading to topological order and fractionalized excitations
[1]. For example, nearest-neighbor resonating valence bond
(NNRVB) states [2] have been extensively studied as
variational wave functions for the ground states of frus-
trated quantum magnets [3,4]. Indeed, the NNRVB states
are topologically ordered [3–7] and support spinon exci-
tations carrying the fractionalized quantum number [4,5].
However, since they are not exact ground states of the
antiferromagnetic Heisenberg model, variational methods
with the NNRVB states have been employed to search for
true ground states [8–11]. The Haldane phase, which is also
known as the symmetry-protected topological phase, is
another fascinating phase that one can find in the S ¼ 1
quantum spin chain. The novel character that discriminates
the Haldane phase from trivial gapped states was most
clearly revealed by the discovery of the Affleck-Kennedy-
Lieb-Tasaki (AKLT) model and its exact ground state or
AKLT state [12]. The compact representation of the AKLT
state [13] provided new insight into the Haldane phase. In
addition, it was subsequently used in a variety of contexts for
variational calculations on quantum spin systems [13,14].
The Kitaev honeycomb model (KHM) is an exactly

soluble model which exhibits gapless and gapped Kitaev
spin liquid (KSL) ground states with fractionalized exci-
tations [15]. Recent successful realizations of Kitaev
materials [16–22] triggered a burst of theoretical inves-
tigations on KHM and its extensions [23–25]. In addition,
owing to the non-Abelian phase of the KSL driven by the
magnetic field [26,27] and its potential application to
quantum computation, it has been a subject of active
research for the last decade. We refer the reader to
Ref. [28] for an exhaustive list of relevant literature.
Tensor network (TN) methods have been also employed

to represent the KSL [29,30]. However, the Majorana basis
TN requires a three-dimensional structure which makes
it impractical as a tool for numerical optimization [29].
On the other hand, the spin basis TN study, which was
done with computationally expensive optimization, suffers
from an undesirable breaking of symmetries [30]. In this
Letter, we provide a compact TN representation for the
KHM that is defined with the spin basis and retains various
symmetries.
Model.—The KHM is defined as [15]

Ĥ ¼ −
X
hαβiγ

Jγσ̂
γ
ασ̂

γ
β; ð1Þ

where hαβiγ stands for a pair on the γð¼ x; y; zÞ links
connecting sites α and β, as depicted in Fig. 1(a).
As demonstrated in Kitaev’s seminal work [15], the
Hamiltonian commutes with the so-called flux operators
defined on all hexagonal plaquettes (p): ½Ĥ; Ŵp� ¼ 0, with
Ŵp ¼ σ̂x1σ̂

y
2σ̂

z
3σ̂

x
4σ̂

y
5σ̂

z
6, where the site indices 1–6 are as

defined in Fig. 1(a). Therefore, the Hilbert space is
sectorized by each flux number fŴp ¼ �1g. Even further,
in each sector, the KHM becomes a noninteracting
Majorana fermion hopping model in the background of
static Z2 gauge fields. The ground states live in the vortex-
free sector (Ŵp ¼ þ1 for all p), and they form a critical
KSL phase around the isotropic point (Jx¼Jy¼Jz¼�1).
In this Letter, we consider only the isotropic point at
which the KHM is invariant under the following
symmetry transformations: C6ÛC6

and σÛσ, where ÛC6
¼

⊗αðσ̂0α þ iσ̂xα þ iσ̂yα þ iσ̂zαÞ=2, Ûσ ¼ ⊗αðσ̂xα − σ̂yαÞ=
ffiffiffi
2

p
, and

C6, σ, respectively, denote the 60° spatial rotation and
inversion as depicted in Fig. 1(a). One can easily verify that
½C6ÛC6

; Ĥ� ¼ 0 ¼ ½σÛσ; Ĥ�. Also, the KHM is invariant
under the time-reversal and translational symmetries.
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Tensor network representation.—We employ the tensor
product state (TPS) representation [31]. Since the KSL is a
zero-flux state [32], we reasonably assume the TPS to be
translationally symmetric. Additionally, we assume that
the tensor does not depend on the sublattice, and therefore
our Ansatz is rewritten as jψi ¼ tTr

Q
αjTiαjαkαi, where tTr

stands for the tensor trace or contraction of all virtual
indices fiα; jα; kαg, α labels the site, and jTijki≡P

sT
s
ijkjsi, with s being the local quantum number. Its

graphical illustration is presented in Fig. 1, where the
black open leg denotes the physical degrees of freedom. In
what follows, we will construct the local tensor jTijki (we
identify Ts

ijk and jTijki and call both “tensor” hereafter)
with consideration for the symmetries, the vortex-free
condition, and the gauge structure. In the Letter, we discuss
the ferromagnetic model ðJγ ¼ 1Þ only since the antiferro-
magnetic one is a trivial generalization and is discussed in
the Supplemental Material (SM) [33].
Zeroth order tensor.—We begin by introducing a bond

dimensionD ¼ 2 tensor product operator (TPO) referred to
as the loop gas (LG) operator, Q̂LG ¼ tTr

Q
αQ

ss0
iαjαkα

jsihs0j,
with a building block tensor

Qss0
ijk ¼ τijk½ðσ̂xÞ1−iðσ̂yÞ1−jðσ̂zÞ1−k�ss0 ; ð2Þ

which is depicted in Fig. 1(c). The virtual indices i, j, and k
range from 0 to 1 (D ¼ 2), and nonzero elements of the τ
tensor are τ000 ¼ −i and τ011 ¼ τ101 ¼ τ110 ¼ 1. To sim-
plify the notation, we define the local operator as
Q̂ijk ¼

P
s;s0Q

ss0
ijkjsihs0j. One can verify at the local tensor

level that the LG operator respects the symmetries of the
KHM. For instance, applying C6ÛC6

on the Q̂ tensor leaves
it intact, i.e.,

ðC6ÛC6
ÞQ̂ijkðC6ÛC6

Þ† ¼ Q̂ijk:

Here, we use the facts that the ÛC6
transformation rotates

the spin, i.e., UC6
σ̂x;y;zα U†

C6
¼ σ̂z;x;yα , while the C6 rotation

permutes the virtual indices as follows: C6∘ðijkÞ ¼ ðkijÞ.

Therefore, the resulting LG operator is invariant under the
ðC6ÛC6

Þ transformation, and other symmetries of the KHM
can be shown in a similar way [33]. Note that the Q
operator satisfies the following relation,

σ̂xQ̂ijk ¼ vjj0v�kk0Q̂ij0k0 ;

σ̂yQ̂ijk ¼ vkk0v�ii0Q̂i0jk0 ;

σ̂zQ̂ijk ¼ vii0v�jj0Q̂i0j0k; ð3Þ
with a matrix v, of which nonzero elements are v01 ¼ i and
v10 ¼ 1, acting on the virtual bonds. Repeated indices
are summed over, except where explicitly stated other-
wise. Using Eq. (3), one can verify a relation ŴpQ̂LG ¼
Q̂LGŴp ¼ Q̂LG. To be more specific, the invariance of a
patch of Q̂LG under the action of Ŵp can be shown as
follows:

where the connected green squares denote Ŵp, and a
physical leg is omitted for simplicity. Here, Eq. (3) and
v†v ¼ 1 are used in the first and second equalities,
respectively. This remarkable relation guarantees a quan-
tum state jψi ¼ Q̂LGjϕi, where jϕi is an arbitrary state,
being vortex-free and thus nonmagnetic. Notice that the LG
operator is identical to the projector

Q
pð1þ ŴpÞ=2 up to a

normalization factor.
Regarding the ðC6ÛC6

Þ symmetry, let us apply Q̂LG on a
product state jϕ0i ¼⊗α jð111Þiα, where jð111Þi denotes a
spin aligned along the (1,1,1) direction: hð111Þjσ⃗jð111Þi ¼
ð1; 1; 1Þ= ffiffiffi

3
p

. Note that the Ansatz jϕ0i is a classical ground
state respecting the ðC6ÛC6

Þ symmetry. Now, we define a
quantum state jψ0i≡ Q̂LGjϕ0iwhich consists of a building
block tensor

jT0
ijki≡ Q̂ijkjð111Þi: ð4Þ

We refer to this as the zeroth order tensor. By virtue of the τ
tensor in Q̂ijk, one can visualize the Ansatz jψ0i as follows:

ð5Þ

Here, the empty site stands for the jð111Þi state, while the
red loops denote the product of the σ̂xjð111Þi, σ̂yjð111Þi,

FIG. 1. Schematic figures of (a) the TPS setup on the
honeycomb lattice, (b) its building block tensor Ts

ijk, and (c) a
building block tensorQss0

ijk of the loop gas TPO defined in Eq. (2).
Here, the x, y, and z links in the model [Eq. (1)] are characterized
in red, blue, and yellow, respectively.
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and σ̂zjð111Þi states, depending on the direction of loop on
each site.
By computing the norm of the LG Ansatz, we can show

its criticality. To this end, we first note that the LG operator
is Hermitian as well as idempotent [33]: Q̂†

LGQ̂LG ¼
NΓQ̂LG, where NΓ is the total number of the loop
configuration in the system. Using such properties and a
simple identity hð111Þjσ̂γjð111Þi ¼ 1=

ffiffiffi
3

p
, it is straightfor-

ward to show that the norm of jψ0i reads

hψ0jψ0i ¼ NΓ

X
G∈Γ

�
1ffiffiffi
3

p
�

lG ¼ NΓ × ZOð1Þ

�
1ffiffiffi
3

p
�
; ð6Þ

where Γ denotes the set of all possible loop configurations
and lG is the total length of loops in a configuration G.
Also, ZOð1ÞðxÞ stands for the partition function of the
classical Oð1Þ loop gas model with the fugacity x, which is
exactly solvable and critical at xc ¼ 1=

ffiffiffi
3

p
[34]. It indicates

that the norm of jψ0i is exactly mapped onto the partition
function of the critical classical model, which guarantees
the criticality of jψ0i [35]. In addition, the Ising conformal
field theory (CFT) with the central charge c ¼ 1=2 is
known to characterize the critical LG model [34], which is
consistent with the KSL of the KHM [36–38].
The LG structure encoded in the τ tensor is useful in

describing the vortex excitation of the KSL. To see this, we
first note that the τ tensor is invariant under a gauge
transformation g ¼ σ̂z, i.e., gii0gjj0gkk0τi0j0k0 ¼ τijk, and thus

gii0gjj0gkk0 jT0
i0j0k0 i ¼ jT0

ijki:

With the trivial gauge transformation I2 being a two-
dimensional identity matrix, g forms a Z2 invariant
gauge group (IGG). The stringlike action of g on the links
would twist the gauge fields [15] along the string and hence
create two vortices Ŵp ¼ −1 at both ends, as demonstrated
below:

where �1 in the hexagon denotes Ŵp. One can explicitly
show [33] such a creation and move of fluxes using Eq. (3).
Finally, we measure the KHM energy (per bond) of jψ0i

and obtain E ¼ −0.16349, which is rather higher than the
exact one EKitaev ≃ −0.19682 [15]. Details on numerics will
be discussed later. By construction, the LG Ansatz jψ0i
made of the zeroth order tensor satisfies most of the
physical constraints respected in the KSL (see the SM
[33] for the time-reversal and σÛσ symmetries) but is
energetically far away from the exact solution. In what

follows, we present a simple but effective TPO (D ¼ 2)
applied to the LG Ansatz which reduces the energy greatly
without violating the constraints. We refer to it as the dimer
gas (DG) operator.
Higher order tensors.—The DG operator is defined by

R̂DG ¼ tTr
Q

αR̂iαjαkα with

R̂ijk ¼ ζijkðσ̂xÞiðσ̂yÞjðσ̂zÞk: ð7Þ

Here, nonzero elements of the ζ tensor are ζ000 ¼ 1 and
ζ100 ¼ ζ010 ¼ ζ001 ¼ z with i, j, k ¼ 0, 1, and z is a real
(or pure imaginary) variational parameter fixing the fugac-
ity of a dimer. In this context, the dimer denotes the
operator Ĥγ

αβ. Then, the DG operator can be interpreted as

the sum of all possible dimer configurations, i.e., R̂DGðzÞ ¼P
G∈ΓD

R̂GðzÞ, where R̂GðzÞ ¼ ⊗hαβiγ∈GðzĤγ
αβÞ is defined

for each dimer configuration G, and ΓD is the set of all
dimer configurations:

ð8Þ

Because ½Ĥγ
αβ; Ŵp� ¼ 0, it is obvious that R̂G commutes

with Ŵp for anyG, and hence R̂DG does: ½R̂DG; Ŵp� ¼ 0. In
fact, we can easily prove that ½R̂DG; Q̂LG� ¼ 0 and that the
DG operator respects all symmetries of the KSL [33].
Therefore, its multiplication to jψ0i does not contaminate
the features of the KSL, regardless of z. Moreover, it can
be expressed as the polynomial function of the KHM
Hamiltonian, which may be the reason why it improves the
energy of the Ansatz quite efficiently. The first key
observation is that we can graphically represent Eq. (1)
raised to the nth power as the linear combination of
elements of ΓD as

Here, the number of sites in the system is assumed to be
2N. The terms grouped with a coefficient α0 are the fully
packed configurations, while the second ones are the
configuration with N − 2 dimers. The terms on the second
line have q-mers longer than a dimer, e.g., trimer Ĥx

αβĤ
y
βγ.

All of those terms with q-mers are canceled by the
anticommutativity of the Pauli matrices, and thus β ¼ 0.
Note that the configurations with the same number of
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dimers share the coefficient which resembles the R̂DG.
Then, one can recast it as R̂DG ¼ P

MhMĤ
N−2M with

proper coefficients hM. Note that our approach is not a
perturbative one [39].
Now, we define the nth order Ansatz as jψnðfzigÞi ¼Q
n
i¼1 R̂DGðziÞjψ0i having n complex variational parame-

ters. Owing to the application of the DG operator, the
Ansatz jψni can be interpreted as a string gas state which is
a linear superposition of string configurations. The string
configuration consists of open and closed strings, con-
nected loops, and string-connected loops, as depicted in
Fig. 2. The building block tensor of jψni, referred to as the
nth order tensor, is obtained by applying the R̂ijk operator n
times on the zeroth order tensor in Eq. (4). The bond
dimension scales as D ¼ 2nþ1. Note that the LG feature or
the τ tensor in the zeroth tensor is inherited by all higher
order tensors. Furthermore, the R̂ijk operator is invariant
only under the trivial gauge transformation, and thus its
action does not enlarge the Z2 IGG, of which the nontrivial
element is simply gn ¼ I2n ⊗ σ̂z. In contrast to the zeroth
order case, the norm of jψni does not map onto the LG
model. However, by employing the loop TN renormaliza-
tion [40], we numerically prove that the nth order Ansätze
are also critical and are characterized by the Ising CFT
as summarized in Fig. 2. We also present the best
variational energies at each order in Fig. 2, and the details
are given below.
Variational Ansatz.—Now, we turn on and tune varia-

tional parameters to obtain a better Ansatz than the zeroth
one. We parametrize the ζ tensor as follows: ζ000 ¼ cosϕ,
ζ100 ¼ ζ010 ¼ ζ001 ¼ sinϕ, and hence R̂ijkðzÞ → R̂ijkðϕÞ.
For measuring the energy, we employ the corner transfer
matrix renormalization group method (CTMRG) [41–43],
whose accuracy is controlled by the dimension χ of the
CTM. The parallel C++ library MPTENSOR [44] is utilized to
perform the CTMRG.
Let us begin with the first order Ansatz jψ1ðϕÞi and its

building block tensor

jT1
i1j1k1

ðϕÞi ¼ R̂ijkðϕÞjT0
i0j0k0

i; ð9Þ

where in ¼ 2niþ in−1 and i ¼ 0, 1. The energy of jψ1ðϕÞi
is presented in Fig. 3(a) as a function of ϕ, where the lowest
value, E ¼ −0.19644, is found at ϕ ¼ 0.24π. Here, we fix
χ ¼ 64. It is remarkable that the first order tensor (D ¼ 4)
already attains such a small error of 0.2%. Furthermore, we
perform the loop TN renormalization to evaluate the norm
of jψ1ðϕÞi and extract the central charge and scaling
dimensions presented in Fig. 3(b) [see the SM [33] for
more details]. All of those are in excellent agreement with
the ones Ising CFT, and therefore our Ansätze are critical
and belong to the same universality class. To obtain an
Ansatz even closer to the KSL, we consider the second
order Ansatz jψ2i and tensor (D ¼ 8):

jT2
i2j2k2

ðϕ; θÞi ¼ R̂ijkðθÞjT1
i1j1k1

ðϕÞi: ð10Þ

Its overall energy landscape is shown in Fig. 4(a) as
functions of ðϕ; θÞ and is minimized at ðϕ; θÞ ¼
ð0.342π; 0.176πÞ. After an additional scaling with respect
to χ [33], we obtain the best variational Ansatz with
E ¼ −0.19681, which is only 0.007% higher than the
exact one. Also, using the environment tensors [45], the
five largest correlation lengths (ξi) are extracted and shown
in Fig. 4(b), which are diverging with χ. An analogous
figure is shown for ψ1 in the SM [33]. Therefore, we

n0 1 2
Critical LG Critical SG Critical SG

Exact

dE/E = 0.17 0.002 0.00007 0

5.0)8(505.0)tcaxe( 5.0= c

FIG. 2. Overview of the nth order Ansatz jψni obtained by
LG and DG operators, where SG denotes the string gas, dE ¼
E − EKitaev denotes the energy deviation, and c stands for the
central charge.
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FIG. 3. (a) Energy of jψ1ðϕÞi, whose building block tensor is
defined in Eq. (9), and (b) the central charge c and scaling
dimensions (Δi) as a function of ϕ. The black solid lines in
(b) denote the exact c and Δi from the Ising universality class.
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FIG. 4. (a) Energy landscape of jψ2ðϕ; θÞi constructed by the
tensor in Eq. (10) as functions of ϕ and θ. The energy minimum is
denoted by the black dot, at which the variational energy is E ¼
−0.19681 [33]. (b) The five largest correlation lengths ξi of the
best Ansatz represented by the dot in (a), where χ stands for the
bond dimension of CTMRG.
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reasonably conclude that the Ansätze made of higher
order tensors form a family of gapless states which we
believe are smoothly connected to the exact KSL and, as a
series, converge to it.
Further, we found [33] that applying the (111)-direction

magnetic field drives the Ansätze into the gapped phase
[15]. We speculate that these gapped Ansätze host non-
Abelian anyonic excitations. The description of the non-
Abelian and Abelian topological phases under the LG and
SG schemes is an interesting problem, and now further
study is in progress [46].
Conclusion.—Based on the physical and gauge sym-

metries and the vortex-free condition, we have constructed
a compact TN representation which generates a family of
KSL-like states sharing the features of the KHM ground
state. In this sense, the Ansätze given in this Letter are
analogous to the AKLT state as a member of the Haldane
states, or the RVB state as an Ansatz of frustrated quantum
magnets [4,12]. Under this scheme, the string gas structure
of the KSL comes into sight clearly, which offers a novel
viewpoint for the KSL and its physics. It also provides an
intuitive picture for the KSL in the spin language without
referring to the Majorana fermion, which has never been
provided before. There are many generalizations that one
can envision, as well as concrete open questions involving
the LG and SG Ansätze, e.g., general LGs having larger
internal degrees of freedom and their parent Hamiltonians.
The relation between the general LGs and the string-net
states [47] is another interesting issue to explore. We also
find that the Ansatz discussed in this Letter provides a good
initial state for a variational method for the KHM with
the magnetic field [48]. Further, for the anisotropic KHM,
one can choose an initial magnetic state which differs from
the state jð111Þi and introduce a bond-dependent dimer
fugacity as additional variational parameters to optimize
the model [46]. Therefore, we expect our work could
furnish a better understanding of KSL and its neighboring
phases observed in Kitaev quantum magnets such as
α-RuCl3 [20,49] and studied theoretically in extended
KHMs [17,22,23,25,50]. Using two variational parameters,
an accuracy of 0.007% in energy is obtained, which has
never been achieved by other numerical optimizations
[51–53]. This high accuracy, together with the observed
systematic convergence, leads us to believe that the present
scheme not only correctly captures the essence of KSL
physics but also provides a new direction for quantitatively
accurate descriptions of quantum spin liquids.
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