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Coupled parametric oscillators were recently employed as simulators of artificial Ising networks, with
the potential to solve computationally hard minimization problems. We demonstrate a new dynamical
regime within the simplest network—two coupled parametric oscillators, where the oscillators never reach
a steady state, but show persistent, full-scale, coherent beats, whose frequency reflects the coupling
properties and strength. We present a detailed theoretical and experimental study and show that this new
dynamical regime appears over a wide range of parameters near the oscillation threshold and depends on
the nature of the coupling (dissipative or energy preserving). Thus, a system of coupled parametric
oscillators transcends the Ising description and manifests unique coherent dynamics, which may have
important implications for coherent computation machines.
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In modern physics, the optical parametric oscillator
(OPO) is widely known due to its applications in classical
and quantum optics. Below the oscillation threshold, the
OPO generates squeezed vacuum [1–4], with applications
in metrology [5–8], micro- and nanoelectromechanical
systems [9–12], quantum information [13–16], and quan-
tum communications [17,18]. Above threshold, an OPO is
the primary source of coherent light at wavelengths that are
not laser accessible.
The working mechanism of a degenerate parametric

oscillator is the well-known period doubling instability
[19]. In contrast to the lasing instability, the gain in a
parametric oscillator depends on the phase of the oscil-
lation, relying on the coherent nonlinear coupling between
the pump field (at frequency γ) and the oscillation (at
exactly γ=2) to amplify a single quadrature component of
the oscillation field while attenuating the other quadrature.
The phase of the amplified quadrature can acquire two
distinct values, which give rise to two inequivalent
solutions with a relative shift of π. Each solution breaks
the time-translational symmetry of the pump, and thus an
OPO is the simplest example of a classical discrete
(Floquet) time crystal [20–29].
Borrowing the common terminology from condensed

matter, a single parametric oscillator can be viewed as a
classical two-level system (spin 1=2, or Ising spin). Based
on this analogy, it has been recently suggested that coupled
parametric oscillators can be used to simulate chains or
networks of Ising spins [30–40]. The Ising simulation relies
on the inherent mode competition and positive feedback
within the oscillators to find the most efficient (coupled-
mode) oscillation, which can reflect the ground-state
configuration of the corresponding Ising model (under
certain assumptions): A set of optical parametric oscillators

can therefore represent a set of independent spin-1/2
systems, where coupling of the optical field between the
oscillators gives rise to a coupled network of spins.
Depending on the coupling, any two oscillators will prefer
to phase lock either in phase (ferromagnetic, 00 or ππ) or
antiphase (antiferromagnetic, 0π or π0). This simulator,
called a coherent Ising machine (CIM), can simulate the
spin dynamics and aims at calculating the ground state of
the corresponding Ising model, thereby solving mini-
mization problems that cannot be solved on a classical
computer.
Here, we show that the dynamics of coupled parametric

oscillators extends well beyond that of coupled Ising spins,
and demonstrate a new dynamical regime of persistent
coherent beating between the oscillators, that exists within
a broad range of parameters near the oscillation threshold.
We consider the simplest case of two coupled degenerate
parametric oscillators with coupling that incorporates both
energy-dissipating and energy-preserving components, and
show that the latter induces a unique coherent dynamics,
where the oscillators never phase lock, but rather display
everlasting, full-scale beats, with a stable phase difference
of π=2. This is in contrast to usual wave phenomena, where
coherent beats are normally a transient phenomenon that
decays due to decoherence, dissipation, and nonlinear
effects. Instead, phase locking is induced by the dissipative
coupling component. The transition from the beating to
the phase-locked regime by slow variation of the cou-
pling properties may be of interest to coherent computing
schemes.
We realize experimentally a pair of coupled parametric

oscillators using parametrically driven radio-frequency (rf)
resonators with a tunable coupling. Our experimental
findings agree with the solution of an analytical model
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that accounts for periodic drive, gain, losses, nonlinearities,
and coupling with energy-preserving and dissipative com-
ponents. The dissipative component simply reflects the
possible imbalance of the couplings between the oscilla-
tors, where the coupling rate from oscillator A to B may be
different from the coupling rate from B to A (indicating
dissipation in the coupling channels) [41].
Our main finding is that, depending on the relation

between the two coupling components, two distinct oscil-
lation regimes exist. (i) When the dissipative component of
the coupling dominates, the system prefers phase locking
either in phase or antiphase, which is the working principle
of CIMs [30]. (ii) When the energy-preserving coupling
dominates, the system displays a richer phenomenology:
When the pump frequency is twice the bare-oscillator
frequency, the system exhibits periodic beats that never
decay or lose coherence. Only when the pump power is
raised further, beyond a higher nonlinear threshold, the
oscillators phase lock. The beating regime, which is unique
to parametric oscillators and cannot be observed in coupled
lasers, represents a trajectory in phase space that visits
periodically all the possible spin configurations and may
have implications for the operation of CIMs. This novel
regime, in which the system is not amenable to the
description of Ising spins, is the main subject of our
analysis.
Theoretically, we first study the coupled system by

resorting to a linear stability analysis, based on Floquet’s
theorem [42–44], which allows us to characterize all the
parametric instabilities of the system without nonlinear-
ities. We then employ a multiscale expansion [45], also
known as slow-varying envelope approximation in non-
linear optics, to determine analytically the phase diagram of
the coupled OPOs including nonlinearities. We find four
major phases of oscillation (see Fig. 1): (i) a stable phase of
no oscillation below threshold (semiclassical squeezed
noise), (ii) a CIM region slightly above threshold with
two possible phase-locked oscillations (this CIM region
exists only when the coupling is dominated by the
dissipative component), (iii) further above threshold, a
region with four possibilities of phase-locked oscillation,
(iv) an extended region near threshold, where the oscillators
show periodic exchange of energy between them (coherent
beating) with a nonuniversal envelope (beat) frequency.
This beating behavior, which appears only when the
energy-preserving component of the coupling dominates,
was not addressed before, and differs from the usual
description of parametric oscillators, whose frequency is
dictated by the pump only. The existence of the beating
region near threshold suggests an alternative route to the
CIM behavior: In addition to the standard direct transition
from subthreshold to the CIM region (arrow A on Fig. 1,
right-hand panel), the oscillators may also cross first into
the beating region (arrow B) and only then reach the CIM
phase-locked regime (arrow C).

Theoretical model.—We study a system of two degen-
erate single-mode parametric oscillators, with equal gain
and loss terms, coupled via energy-preserving and energy-
dissipating terms, in the presence of pump-depletion non-
linearity. We analytically model our system by a set of
classical equations of motion:

ẍ1 þ Ω2
1ðt; 0Þx1 þ ω0g_x1 − ω0ðr − αÞ_x2 ¼ 0;

ẍ2 þΩ2
2ðt;ϕÞx2 þ ω0g_x2 þ ω0ðrþ αÞ_x1 ¼ 0: ð1Þ

Here, x1 and x2 represent the oscillation amplitudes, the
resonant frequency Ω1;2ðtÞ is parametrically modulated in
time as Ω2

jðt;ϕÞ ¼ ω2
0½1þ hðxjÞ sinðγtþ ϕÞ� (j ¼ 1, 2),

with ω0 being the resonant frequency of the oscillators, γ
the pump frequency, and ϕ the relative phase between the
pumps; hðxÞ ¼ hð1 − βx2Þ represent the normalized pump
power, where β accounts for the pump-depletion non-
linearity when the oscillation is substantial, g is the intrinsic
loss, and r and α represent the energy-preserving and
energy-dissipating coupling terms, respectively.
If x1;2 are sufficiently small, the nonlinearity can be

neglected (β ¼ 0), which is valid close to the oscillation
threshold, allowing us to diagonalize Eq. (1) by introducing
the two eigenmodes x�ðtÞ ¼ x1ðtÞ þ q�ðr; αÞx2ðtÞ, where
the coefficients q�ðr; αÞ are determined by the values of r
and α. The stability analysis of the system can then be
carried out by means of a perturbative approach based on
Floquet’s theorem. We discuss here the main results (for
details, see Ref. [41]).
When the dissipative coupling dominates, α > r, there is

only one parametric resonance at γ ¼ 2ω0. The two eigenm-
odes x� have different thresholds, hth;� ∼ 2g� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

α2 − r2
p

.
Therefore, by increasing h above the lower threshold, one
can selectively excite x−, and for higher h, also xþ. The two
modes are excited independently and oscillatewith the same

FIG. 1. Stability phase diagram in the h2=ð2gÞ2 versus r plane,
computed from Eq. (2) with g ¼ 3.2 × 10−2 and β ¼ 10−2. (Left)
Energy-preserving coupling only (α ¼ 0) and (right) with an
energy-dissipating coupling of α ¼ 2.2 × 10−3. Different colors
indicate different phases (see labels). For α ¼ 0, the experimental
points (red dots and blue crosses, indicating that beats or phase
locking was experimentally observed, respectively) are super-
imposed on the theoretical phase diagram.
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frequency (γ=2), with an exponential time dependence:
x�ðtÞ ∼ eðh−hth;�Þω0t=4 cosðγt=2Þ. This is the standard case
for CIMs.
In contrast, when the energy-preserving coupling domi-

nates, r > α, the system displays a richer phenomenology:
The coupling lifts the degeneracy between the oscillators
and generates two coupled modes x� with linear eigenfre-
quencies, ω� ¼ ω0ð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 − α2
p

=2Þ. Yet, parametric res-
onances of the coupled system appear in three distinct
frequencies: two resonances expectedly at γ ¼ 2ω�, which
represent independent excitation of each coupled mode, and
one new, less expected resonance at γ ¼ ωþ þ ω− ¼ 2ω0,
where both eigenmodes x� are excited simultaneously,
leading to full-scale beats above the threshold hth ∼ 2g:

x�ðtÞ ∼ e∓iω0t
ffiffiffiffiffiffiffiffiffi

r2−α2
p

=2eðh−hthÞω0t=4 cosðγt=2Þ. Indeed, when
pumped at γ ¼ 2ω0, the system cannot oscillate on a single
coupled mode (due to the frequency mismatch), but non-
degenerate oscillation of both modes is still possible. We
therefore see (Fig. 1) that at r ¼ α the system undergoes a
transition from a CIM to a coherent beating behavior. The
actual existence of the three resonances depends on the
pump phase ϕ: when ϕ ¼ 0, only the resonance at γ ¼ 2ω0

can be excited, whereas for ϕ ¼ π, only the resonances at
γ ¼ 2ω� exist (for a generic 0 < ϕ < π, all three resonances
are found).
We now expand the analysis further above the threshold

(beyond the linear Floquet analysis) by incorporating the
nonlinearity β ≠ 0 and resorting to a multiple-scale per-
turbative expansion [45]. For brevity, we focus on degen-
erate pumping at γ ¼ 2ω0, where the system displays richer
physics, and ϕ ¼ 0.
The fast timescale of the oscillator is associated

with the carrier frequency t ¼ 2π=ω0 and the loss g is
the small expansion parameter of the theory, allowing
us to identify the slow timescale τ ¼ gt. We therefore
write x1ðt; τÞ ¼ AðτÞeiω0t þ A�ðτÞe−iω0t and x2ðt; τÞ ¼
BðτÞeiω0t þ B�ðτÞe−iω0t, where A and B are the complex
amplitudes of x1 and x2, respectively. By normalizing
h̃ ¼ h=g, r̃ ¼ r=g, and α̃ ¼ α=g, and defining τ̃ ¼ ω0τ,
the long-time dynamics is captured by the set of ordinary
differential equations [41]:

∂A
∂ τ̃ ¼ h̃

4
A� −

h̃β
4
ð3jAj2A� − A3Þ − A

2
þ r̃ − α̃

2
B ¼ 0;

∂B
∂ τ̃ ¼ h̃

4
B� −

h̃β
4
ð3jBj2B� − B3Þ − B

2
−
r̃þ α̃

2
A ¼ 0: ð2Þ

We now calculate the phase diagram of Eq. (2) in the
ðh=2gÞ2 versus r plane (see Fig. 1), using tools of nonlinear
dynamics [19] to determine the number of fixed points and
their stability. Below the threshold h < hth, a unique stable
fixed point exists at A ¼ B ¼ 0 (the origin). Above the
threshold (h > hth), the origin is unstable and two situa-
tions are encountered (α̃ ≠ 0). For r̃ < α̃, two stable

fixed points correspond to two preferred phase-locked
configurations—in phase (00 or ππ) or antiphase (0π or
π0) depending on the sign of α̃, in which the oscillators
phase lock with a constant envelope. For larger h̃, two
additional stable points correspond to the two additional
phase-locked configurations, as discussed in the analysis of
CIMs [30]. For r̃ > α̃, one first finds a stable limit cycle,
which manifests itself as beats in the time evolution of A
and B. In this region, the relative phase between the two
oscillators flips periodically between 0 and π. Only for
larger h̃, the region with two or four stable fixed points
appears. If α̃ ¼ 0, the CIM region does not exist at all. For
ϕ > 0, the width of the limit-cycle region gradually
decreases, eventually vanishing at ϕ ¼ π [41].
Experimental methods.—Since the dynamics described

here is coherent and purely classical, it is suitable to realize
the coupled parametric oscillators in a rf configuration.
Although a rf parametric amplifier at room temperature will
not demonstrate quantum squeezing, it can realize easily
semiclassical squeezing of the classical thermal noise
within the oscillator (to be reported in a future publication).
Furthermore, a rf experiment is technically very simple and
allows us to observe the oscillation also directly in time (on
an oscilloscope), which is a great advantage compared to
optical realizations.
The coupled parametric oscillators are realized with two

ring rf resonators (see Fig. 2) of 70-cm-long coaxial cables
with a repetition rate of roughly 85 MHz. Each resonator
includes (a) a rf frequency mixer pumped at 170 MHz by a
rf synthesizer acting as the nonlinear parametric amplifier,
(b) a broadband (regular) low-noise amplifier with gain of
approximately 15 dB, which compensates for the losses of
the cavity, (c) a −15 dB coupler for the resonator output,
and (d) a tunable attenuator to electronically tune the
overall gain of the oscillator. The coupling between the

FIG. 2. (Top) Picture and (bottom) scheme of the experimental
setup. Our parametric oscillators (PO1 and PO2) are implemented
in rf using standard components: (A) frequency mixer, (B) broad-
band amplifier, (C) coupler, (D) power splitter coupler.
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parametric oscillators is achieved with a fixed power
splitter and a couple of tunable attenuators to control the
effective coupling. The oscillators are pumped by two
phase-locked synthesizers, allowing us to control the
relative phase between the pumps (see Supplemental
Material for more details [46]).
Since we aim primarily at demonstrating the properties

of the beating regime (limit cycle) with energy-preserving
coupling, we mostly focus experimentally on α ¼ 0 and
monitor the field emitted from the parametric oscillators for
various values of the pump power h with respect to the
oscillation threshold hth and various coupling strengths r,
determined by the beat frequency at threshold. Our results
are shown in Figs. 3(a)–3(d). The left-hand plots show the
experimental results, while the right-hand panels show the
corresponding theoretical solution, obtained by numeri-
cally solving Eq. (1). The latter plots are overlapped by the
oscillation envelopes 2jAðgtÞj, 2jBðgtÞj (orange and black),
computed by solving the slow-varying Eq. (2). For pump-
ing slightly above threshold, both oscillators demonstrate a
regular, nearly sinusoidal beating envelope over a carrier
signal at half the pump frequency, which matches the cavity
resonance at 87 MHz [Figs. 3(a) and 3(b)]. As we further
increase the pump power, the period of the beats increases
and their shape becomes elongated and pear shaped
[Figs. 3(c) and 3(d)], until finally diverging at the transition
to a phase-locked steady state (not shown).
In Fig. 3(e), we show the flow of Eq. (2) as BR ≡ Re½B�

versus AR ≡ Re½A�, for three different cases: slightly above
the oscillation threshold, where all fixed points are saddle
points and the limit cycle is nearly a perfect circle around
the origin, corresponding to perfect beats; just before phase
locking, where the limit cycle becomes sharper and the
beats assume an asymmetric shape; after phase locking,
where stable attractors around the origin stabilize the
dynamics.
From the observed fields inside the cavities, we can

obtain an experimental phase diagram to be compared to
the theoretical behavior discussed before (Fig. 1, left-hand
panel). For a given set of values of ðh=2gÞ2 and r, we
superimpose the experimental points on the theoretical
map, marking red dots when beats are observed and blue
crosses when phase locking is observed (using g as a fit
parameter, g ¼ 3.2 × 10−2). Close to phase locking, the
system is very sensitive to noise, and the observed behavior
alternates between beats and phase locking, which limits
the precise estimation of the experimental transition line.
We now consider experimentally the case of α ≠ 0.

Unfortunately, we cannot produce a quantitative experi-
mental map for both r, α ≠ 0 due to imperfections of the
mixers in the resonator, which prevent accurate and
independent calibration of both r and α when their values
are comparable. We can, however, obtain a spectrogram
of the beating fields, monitoring the frequency f − γ=2
(the offset from the center carrier) as r − α is scanned from

positive to negative. This shows the collapse of the beats
exactly at r ¼ α, as shown in Fig. 4(a), where the pump is
fixed slightly above threshold. We observe a phase-locked
state for r < α, whereas for r > α the spectrum splits into

FIG. 3. (a), (c) Experimental and (b), (d) numerical time
evolution of the fields x1ðtÞ (blue) and x2ðtÞ (red), and corre-
sponding slow-varying amplitudes (orange and black, respec-
tively). The data are taken (a),(b) just above the oscillation
threshold and (c),(d) close to phase locking. (e) Flow of Eq. (2)
shown as the real part of B (BR) versus the real part of A (AR) (red
lines). Saddle and stable points are represented by black and
green dots, respectively.

FIG. 4. Experimental spectrogram of the field inside one of the
oscillators. The color map shows the signal intensity in a log
scale: (a) For a fixed h > hth, the system undergoes a transition
from the phase-locked to the beating regime at r ¼ α; (b) for a
fixed r < α, the system enters the phase-locked regime as the
pump crosses the threshold (h ¼ hth); whereas (c) for r > α, the
system instead enters the beating regime directly above threshold.
Panels (b) and (c) represent the situations depicted by arrows A
and B in Fig. 1, respectively.
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two main symmetric branches (indicating beats). The
observed scaling of the main branch (dashed white line)
is consistent with the square-root scaling predicted in
Eq. (2) [41]. The additional branches in the spectrogram
for r > α are due to the anharmonicity of the beats
close to the transition (see also Fig. 3). Figures 4(b) and
4(c) show f − γ=2 as a function of ðh=hthÞ2 for r < α and
r > α, respectively. For r < α, the system undergoes a
direct transition from below threshold (no signal for
h < hth) to phase locking (at f ¼ γ=2), whereas for
r > α, crossing threshold leads directly to the beating
state with two symmetric frequency components, f−γ=2¼
�ω0

ffiffiffiffiffiffiffiffiffiffiffiffiffi

r2−α2
p

=2.
In conclusion, we reported a detailed study of two

coupled parametric oscillators, explored in a rf experiment,
analytically and numerically. A single parametric oscillator,
which spontaneously breaks the symmetry associated with
the time periodicity of the pump, is the prototype example
of a discrete time crystal, analogous to an Ising spin.
Although naively one would expect this to hold also when
several parametric oscillators are coupled, our study reveals
a much richer phase diagram with a new limit-cycle region,
where the oscillators perform coherent beats that never
decay or decohere when the coupling contains a significant
energy-preserving component. This beating regime repre-
sents a new class of coherent dynamics that was not
previously considered within the vastly researched subject
of coupled oscillators and is unique to coupled parametric
oscillators, demonstrating a new aspect of their coherent
link to the pumping field and to each other.
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