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We present a unique matter-wave interferometer whose phase scales with the cube of the time the atom
spends in the interferometer. Our scheme is based on a full-loop Stern-Gerlach interferometer incorporating
four magnetic field gradient pulses to create a state-dependent force. In contrast to typical atom
interferometers that make use of laser light for the splitting and recombination of the wave packets, this
realization uses no light and can therefore serve as a high-precision surface probe at very close distances.
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Introduction.—The Stern-Gerlach (SG) effect [1] of 1922
is a paradigm of quantum mechanics and allows an illumi-
nating glimpse [2] into the inner workings of this theory.
Moreover, it arguablymarks the birth of atom interferometry
[3,4]. Indeed, the splitting of an atomic beam by a magnetic
field gradient served as the starting point for Bohm [5] and
Wigner [6] in their discussion of the coherence in a SG
interferometer (SGI). A detailed analysis [7–9] of such a
device concluded that it would require an extreme accuracy
of the field gradients to maintain coherence, a formidable
challenge appropriately coined the Humpty-Dumpty effect.
In the present Letter, we report on the successful

implementation of an SGI utilizing the strong and accurate
magnetic field gradients [10,11] provided by the currents in
the wires of an atom chip [12]. Our SGI is unique in three
aspects. (i) Although the gradient fields act on the atom
continuously during its flight through the interferometer, as
in the Humpty-Dumpty configuration [7–9], we obtain a
remarkably high contrast. (ii) The observed phase shift
scales [13] with the cube of the time the atom spends in the
SGI, and thus represents the first interferometric measure-
ment of the Kennard phase [14–16] predicted in 1927.
(iii) The lack of light pulses to split and recombine the
beams in combination with the Kennard phase makes our
interferometer a perfect probe for magnetic as well as other
properties of surfaces.
In general, the phase of spatial light-pulse atom inter-

ferometers [3,4] does not display a pure T3 scaling, where

T is the total interferometer time. For example, in the
Ramsey-Bordé interferometer [17], the phase shift origi-
nates from a constant position difference between two
paths, which in the presence of a time-independent linear
potential leads to a phase proportional to T. In the
Kasevich-Chu interferometer [18,19], it is caused by a
piecewise constant momentum difference leading to a T2

scaling. However, our T3 SGI has a piecewise constant
acceleration difference between its two paths resulting in a
phase scaling as T3.
Phase contributions scaling with T3 emerge also in other

setups and originate, for example, from rotation in a Sagnac
interferometer [20], the presence of a gravity gradient [21],
or a time-dependent acceleration induced by Bloch oscil-
lations [22] in the Kasevich-Chu configuration. However,
our T3 SGI has a pure T3 scaling resulting from the
imprinted state-dependent linear potentials.
Probing surfaces with sensitive matter waves is a long-

standing goal. Previous studies have probed short-distance
phenomena such as Casimir-Polder forces [23,24], Johnson
noise [25,26], patch potentials [26–28], and exotic physics
such as the fifth force [29–31]. Matter-wave interferometry
near the surface can significantly increase the sensitivity.
Unlike a light-based atom interferometer, which cannot
operate close to the surface due to light scattering from the
nearby object, the SGI does not require any laser light in
order to control a coherent spatial superposition of two
atomic wave packets. As the accumulated phase is sensitive

PHYSICAL REVIEW LETTERS 123, 083601 (2019)

0031-9007=19=123(8)=083601(6) 083601-1 © 2019 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.123.083601&domain=pdf&date_stamp=2019-08-21
https://doi.org/10.1103/PhysRevLett.123.083601
https://doi.org/10.1103/PhysRevLett.123.083601
https://doi.org/10.1103/PhysRevLett.123.083601
https://doi.org/10.1103/PhysRevLett.123.083601


to magnetic fields, the SGI may be used as a unique probe
for magnetic surface properties, as well as for noise and
order parameters in electron transport such as squeezed
currents. In addition, in a “matter-wave homodyne” type
scheme, one wave packet may be put in the vicinity of the
surface while the other acts as a reference.
Setup.—Our experiment is based on what is, to the best

of our knowledge, the first full-loop SGI realization [11], as
originally envisioned [5,6]. Different from previous real-
izations of the SG effect [32,33], it uses four magnetic field
gradient operations for splitting, stopping, accelerating
back, and stopping for a complete closure of a full loop.
The experiment begins with a 87Rb Bose-Einstein con-
densate released from a magnetic trap and falling freely
under gravity. We define our coordinate system such that
the z axis is along the gravitational acceleration of
magnitude g. The nonlinear Zeeman effect of a bias
magnetic field B0 of 35 G along the y axis, added by an
external pair of Helmholtz coils, creates an effective two-
level system consisting of the states j1i≡ jF ¼ 2; mF ¼ 1i
and j2i≡ jF ¼ 2; mF ¼ 2i of the 52S1=2 manifold. Since
the Bose-Einstein condensate quickly expands after its
release from the magnetic trap, the interatomic interactions
are negligible and the experiment may be considered a
single-particle experiment.
After being released, the initially prepared atomic

internal state j2i is transferred to an equal superposition,
jϕπ=2i≡ ðj1i þ j2iÞ= ffiffiffi

2
p

, by an on-resonance radio-fre-
quency (rf) π=2 pulse, as shown in Fig. 1. Following a
free-fall time of 400 μs, named hereafter the dark time, we
apply an rf π pulse that flips the atomic state to ðj1i–j2iÞ= ffiffiffi

2
p

.
After a second dark time of another 400 μs, the second rf π=2
pulse completes the echo sequence. Using a long magnetic
field gradient and standard absorption imaging, we measure
the relative populations of the states.
The interferometric scheme realized during the second

dark time consists of four magnetic field gradient pulses
produced by three parallel gold wires along the x axis on
the atom chip [11]. The currents running through them in
alternating directions are identical and create a two-dimen-
sional quadrupole field in the yz plane with its center (zero)
at z0 ¼ 98 μm below the chip surface.
The first gradient pulse, applied for a duration of T1,

prepares the state of the atomic center-of-mass motion in
the form of two wave packets taking separate trajectories.
Indeed, close to the center, the wave packets experience
different forces Fi ¼ μið∂By=∂zÞez where μi ≡ hijμ̂yjii ¼
μBgFi

mFi
is the mean value of the magnetic dipole moment

of the state jii with i ¼ 1, 2. Here, μB, gF, and mF denote
the Bohr magneton, the Landé factor, and the projection of
the angular momentum on the y axis, respectively.
After a delay time, Td1 ¼ Td, which is limited by the

speed of our electronic circuits, we apply a second and third
pulse back-to-back of identical duration, T2 ¼ T3 ¼ T1.
This combined pulse, having opposite polarity (the

direction of the magnetic field gradient) to the first pulse
thereby applying a force in the opposite direction, first
compensates the momentum difference between the two
wave packets, and then reverses the direction of their
motion. A fourth pulse applied after another delay time,
Td2 ¼ Td, for a duration T4 ¼ T1, with the same polarity as
the first pulse, leads to an interferometer which is closed
both in momentum and position.
Phase of interferometer.—In the T3 SGI, no transitions

occur during the four gradient pulses, as shown in Fig. 1.
Hence, the complete quantum state

jΨðtÞi ¼ 1ffiffiffi
2

p ½j1iÛ1ðt; 0Þjψð0Þi − j2iÛ2ðt; 0Þjψð0Þi� ð1Þ

is determined by the state jψð0Þi of the center-of-mass
motion directly after the π pulse, with hψð0Þjψð0Þi ¼ 1,
together with the time evolution operator Ûi for the internal
state jii corresponding to the time-dependent potential

Viðz; tÞ≡ −
�
mgþ μi

∂By

∂z F ðtÞ
�
z; ð2Þ

where m is the atomic mass.

FIG. 1. Pulse sequence of our longitudinal T3 SGI (not to
scale). (a) Center-of-mass trajectories of the atomic wave packets
with internal states j1i (bottom, green) and j2i (top, purple). Also
shown are the π=2 and π rf (light blue) and magnetic gradient
splitting, stopping, reversing and recombining pulses (light red).
The magnetic field gradients result in a state-dependent force
along the z direction while the strong bias magnetic field along
the y direction defines the quantization axis. (b) Time dependence
of the relative force F ≡ F ðtÞ, Eq. (3), (orange curve) and the
corresponding relative momentum δpðtÞ ¼ P2ðtÞ − P1ðtÞ, (blue
dashed curve) between the wave packets moving along the two
interferometer paths. In the experiment, we have achieved
the maximal separations δzmax ¼ 1.4 μm and δpmax=mRb ¼
19 mm=s in position and velocity.
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Moreover, the time dependence

F ðtÞ≡ ΘðtÞ − Θðt − T1Þ − Θðt − T1 − TdÞ
þ Θðt − 3T1 − TdÞ þ Θðt − 3T1 − 2TdÞ
− Θðt − 4T1 − 2TdÞ; ð3Þ

displayed in Fig. 1(b) by the orange curve involves the
Heaviside step function ΘðtÞ.
Since Vi is linear in the coordinate z, we can obtain the

explicit expression [34]

Ûiðt; 0Þ≡ eiΦiðtÞD̂½ZiðtÞ;PiðtÞ�Û0ðt; 0Þ ð4Þ

for Ûi which consists of the product of (i) the time
evolution operator Û0ðt; 0Þ≡ exp ½−itp̂2

z=ð2mℏÞ� of the
center-of-mass motion of the free atom, (ii) the displace-
ment operator D̂½Z;P�≡ exp ½ði=ℏÞðPẑ − Zp̂zÞ� with

PiðtÞ≡ −
Z

t

0

dτ
∂Vi

∂z and

ZiðtÞ≡ −
1

m

Z
t

0

dτðt − τÞ ∂Vi

∂z ; ð5Þ

as well as the position ẑ and momentum p̂z operators, and
(iii) a phase factor

ΦiðtÞ≡ −
1

2ℏ

Z
t

0

dτZiðτÞ
∂Vi

∂z : ð6Þ

The second π=2 pulse applied at t ¼ T ≡ 4T1 þ 2Td
recombines both branches of the interferometer, and the
probability P1 ≡ hψ1ðTÞjψ1ðTÞi to observe atoms in the
internal state j1i follows from the state jψ1ðTÞi≡
hϕπ=2jΨðTÞi of the atomic center-of-mass motion, which
according to Eq. (1) takes the form

jψ1ðTÞi¼
1

2
feiΦ1ðTÞD̂½Z1ðTÞ;P1ðTÞ�

−eiΦ2ðTÞD̂½Z2ðTÞ;P2ðTÞ�gÛ0ðT;0Þjψð0Þi: ð7Þ

From Eqs. (5) and (3) we note that the two branches
overlap in both momentum and position, that is P1ðTÞ ¼
P2ðTÞ and Z1ðTÞ ¼ Z2ðTÞ, as depicted in Fig. 1, leading
to identical displacement operators in Eq. (7). Hence, the
probability

P1 ¼
1

2
½1 − cos ðδΦþ φ0Þ� ð8Þ

contains the interferometer phase δΦ≡Φ1ðTÞ −Φ2ðTÞ
given explicitly by

δΦ ¼ mgaB
ℏ

�
μ1 − μ2
μB

�
ð2T3

1 þ 3T2
1Td þ T1T2

dÞ

þma2B
ℏ

�
μ21 − μ22
μ2B

��
2

3
T3
1 þ T2

1Td

�
: ð9Þ

Here, φ0 is a constant phase taking into account possible
technical misalignment and aB ≡ ðμB=mÞð∂By=∂zÞ.
In this derivation we have made two assumptions.

(i) Close to the center, the magnetic field generated by
the three-wire configuration is linear. (ii) The lengths of the
four gradient pulses are identical, that is T2;3;4 ¼ T1, and so
are the two delay times, Td1 ¼ Td2 ¼ Td.
Assumption (i) holds true when the distance (∼1 μm)

traveled by the atomic wave packets is small compared to
the distance (∼100 μm) from the chip. In our current
apparatus, a violation of this constraint and the resulting
magnetic field nonlinearity gives rise to a 3.5% change in
the applied force. Future improvements of the experiment
will be required to address this issue.
Regarding assumption (ii), we have slightly adjusted the

length of T4, in order to better optimize the visibility and
account for the nonlinearity, up to a difference of 8%
from T1.
Measurement of the cubic interferometer phase.—

Nevertheless, the experimental data (dots) depicted in
Fig. 2 agree very well with the theory (solid red line)
based on Eq. (9), where the fitting parameters are the decay
constant of the visibility, the magnetic field gradient
∂By=∂z or aB, and a constant phase φ0. The dashed blue
line is a fit based on Eq. (9) with Td ¼ 0, leading to a pure
cubic scaling [35]

δΦðT3Þ ≅
maB
32ℏ

�
μ1 − μ2
μB

��
gþ μ1 þ μ2

3μB
aB

�
T3 ð10Þ

of the interferometer phase with the total time T ≅ 4T1. In
our experiment Td ¼ 2.6 μs, with T1 having a maximal
value of 70 μs.
The maximum contrast displayed by the gray lines is

first measured by performing only the spin-echo sequence
(π=2 − π − π=2) without the magnetic field gradients and
changing the phase of the closing rf π=2 pulse. The
maximal visibility is limited by imperfections in the rf
pulses. The echo sequence also allows us to cancel
out the contribution to the interferometer phase from
the bias magnetic field, and to increase the coherence
time.
As a result, this interferometric technique allows

us to measure the magnetic field acceleration, afitB ¼
273.16� 0.09 m=s2. On the other hand, the magnetic field
gradient ∂By=∂z was determined independently by the
time-of-flight (TOF) technique where the atomic ensemble
is released from the magnetic trap, and a single magnetic
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field gradient pulse is applied. Measuring the final
position of the atomic ensemble after some TOF, we obtain
aTOFB ¼ 271� 6 m=s2. The difference in measurement
errors clearly shows that our T3 SGI provides a precise
measurement of the magnetic field gradient.
Because of the stable current in the external coils, the

fluctuations of the homogeneous bias field are relatively
small. The phase noise is mainly proportional to the
amplitude of the magnetic field of the gradient pulses
originating from the chip currents [10]. Positioning the
atoms near the center of the magnetic field quadrupole
created solely by the three chip wires, reduces the phase
noise considerably [11]. The fluctuations are further
reduced due to the fact that the chip wire current is driven
by batteries which supply a stable voltage modulated using
a homemade current shutter. Shot-to-shot charge fluctua-
tions are measured to be δQ=Q ¼ 3.6 × 10−3 where Q is
the total charge in a single pulse.
Next, we consider the case when T1 ≪ Td and keep

the absolute value of the relative momentum δp0 ≡
maBT1ðμ1 − μ2Þ=μB between the two paths constant, that
is, we take the magnetic field gradient pulses to be a delta
function. In this limit the interferometer phase

δΦðT2Þ ≅
δp0

4ℏ
gT2 ð11Þ

following from Eq. (9) scales quadratically with the total
time T ≅ 2Td, since we maintain a piecewise constant
momentum difference between the two arms similar to the
T2 SGI [11], or the Kasevich-Chu interferometer [34].
However, in the case of the T2 SGI the momentum transfer
δp0 is provided by the magnetic field gradient rather than
the laser light pulse.

Finally, in Fig. 3 we compare the scaling of the
interferometer phases δΦðT3Þ (solid red curve) and δΦðT2Þ
(dashed blue curve) given by Eqs. (10) and (11), respec-
tively. In squares are the data points from Fig. 2 and in dots
are data from our T2 SGI [11]. It is clear that the T3 SGI
significantly outperforms the T2 SGI with respect to total
phase accumulation.

FIG. 3. Comparison between the scalings of the interferometer
phases δΦðT3Þ (solid red curve) and δΦðT2Þ (dashed blue curve)
given by Eqs. (10) and (11), respectively. The squares are data
from Fig. 2, while the dots are from our T2 SGI realization [11].
The green square represents the largest accumulated phase of the
T3 SGI in its current configuration with Tmax ¼ 285 μs at the
point of ≈30% contrast. As a reference, the green dot indicates
the largest accumulated phase observed with a T2 SGI also at
≈30% contrast. The latter is significantly smaller although the
magnetic field gradients and the maximal time Tmax ¼ 924 μs are
larger than those of the T3 SGI by a factor of 2.3 and 3.2,
respectively [36].

FIG. 2. Measurement of the cubic phase with the T3 SGI presented in Fig. 1. The solid red line represents a fit based on Eqs. (8) and (9)
to the experimental data (dots), where the fitting parameters are the decay constant, the magnetic acceleration aB, and a constant phase
φ0. The dashed blue line is a fit based on Eq. (9) with Td ¼ 0, leading to a pure T3

1 scaling of the interferometer phase as seen in Eq. (10).
The visibility drops from 68% to 32% over 70 μs with a decay time of 75 μs. This reduction results from inaccuracies in recombining the
two interferometer paths. The dashed gray horizontal lines depict the maximal and minimal values of the population P1 measured
without magnetic field gradients.
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Summary.—We have realized a novel matter-wave inter-
ferometer, being unique in several ways. (i) It opens a road
towards testing the Humpty-Dumpty hypothesis. (ii) The
phase scales purely as T3, constituting an observation of the
Kennard phase. (iii) It does not utilize light to create beam
splitters and mirrors, enabling a novel probe for surface-
induced phenomena. A future challenge will be to find
configurations with this, or even an improved, phase
scaling, which are more sensitive to external forces.
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