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Apart from the difficulty of producing highly scattering samples, a major challenge in the observation of
Anderson localization of 3D light is identifying an unambiguous signature of the phase transition in
experimentally feasible situations. In this Letter, we establish a clear correspondence between the collapse of
the conductance, the increase in intensity fluctuations at the localization transition and the scaling analysis
results based on the Thouless number, thus connecting the macroscopic and microscopic approaches of
localization. Furthermore, the transition thus inferred is fully compatible both with the results based on the
eigenvalue analysis of the microscopic description and with the effective-medium Ioffe-Regel criterion.
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After the pioneering work of Ph. W. Anderson on
localization of electron waves in metals due to disorder
[1], where the electronic modes acquire an exponentially
localized profile in the crystalline structure, the phenome-
non was shown to hold more generally for propagation of
waves in disordered potentials, including light [2,3] and
acoustic [4] waves. Since then, efforts focused on observ-
ing localization induced by disorder, independently of the
interparticle interactions present for electrons: experimental
signatures of Anderson localization have been reported for
acoustic waves [5], matter waves in one and three dimen-
sions [6–9], microwaves in quasi-1D [10] and two dimen-
sions [11], and even surface plasmon polaritons [12].
Localization of light has a more tortuous story [13,14],

due to the lack of definite signatures and of highly
scattering systems. Indeed while localization has been
reported for propagating light waves in 1D [15] and 2D
[11], these lower dimensional systems enable a direct
observation of the modes, and do not suffer the necessity
of a critical disorder strength to reach localization.
Differently, 3D samples are difficult to produce, so it is
difficult to assess a subwavelength scattering mean free
path [16], and the initial signatures for 3D experiments,
looking at either the diffuse transmission [17–20] or at the
late time decay of the transmitted intensity [21], were later
challenged. On the one hand, high scattering cross section

samples were obtained from semiconductor powders, yet
they were plagued with absorption [22], masking or
mimicking localization. On the other hand, TiO2 com-
pressed to high densities, used in time-resolved experi-
ments, required high laser input power to detect possible
deviations from diffuse transmission laws. This leads to
nonlinear effects and spurious fluorescence of the sample,
and the corresponding long lifetimes could again be
incorrectly interpreted as localization [23]. In addition to
these technical challenges, experimental observables which
would exhibit a smoking gun signature of localization are
hard to obtain in 3D. Indeed, it is difficult if not impossible
to perform a direct observation of localized eigenstates, and
one is often limited to detecting light scattered by the
sample.
These controversial results originate in gaps in the

localization theory of light, where microscopic and macro-
scopic approaches have not been unified yet. On the one
hand, important numerical efforts were recently dedicated
to elucidate the crucial role of polarization and near-field
terms in precluding localization [24,25], or the possibility
of restoring it using an external magnetic field [26,27].
These decisive results were obtained through eigenvalue
analysis (the so-called scaling analysis [28]) of a micro-
scopic representation of cold atom clouds [29]. On the
other hand, the definition of a macroscopic conductance
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from the light statistics aims at describing the modification
of transport at the localization transition [30], but a formal
connection to the microscopically derived quantities,
including a microscopic conductance derived from eigen-
values [16,24,25], is still missing. Since neither eigenvalues
nor (localized) eigenvectors are easily measured in optical
experiments, the important question of a proper macro-
scopic observable to detect the localization transition of
light remains unanswered.
In this Letter, starting from an ab initio description of the

light-atom interaction we show that intensity statistics
allow us to connect the microscopic and macroscopic
realms, and are a suitable observable for the study of the
localization transition. Intensity fluctuations have been
used to detect localization of ultrasound waves in 3D [5]
and of light in quasi-1D [10]. We here show that the
statistics (analyzed through the intensity variance) present
deviations from Rayleigh law in a one-to-one correspon-
dence with the macroscopic conductance, which collapses
at the phase transition. The extension of this study in
presence of a magnetic field gives results in excellent
agreement with the eigenvalue analysis, as well as with the
effective medium Ioffe-Regel criterion on the scattering
mean free path, showing the full compatibility between the
different approaches. This suggests that intensity statistics
are a powerful tool to study the 3D localization transition
for light.
An experimental scheme to measure intensity fluctua-

tions of the scattered light is presented in Fig. 1, where the
cloud is illuminated by a focused laser beam, and its
radiation is collected in a given direction. The inset shows
the result of a numerical simulation of the fluctuating
detected intensity, due to the motion of the atoms trapped at
finite temperature in a harmonic potential. The fluctuations
of radiated intensity is captured by the second order optical
coherence gð2ÞðτÞ ¼ hIðtÞIðt − τÞi=hI2ðtÞi, where h:i refers
to a time average. Throughout this Letter, the fluctuations
analysis is performed using various distributions of motion-
less atoms [considering the stationary regime for the

dipoles of Eq. (1) below], so the average h:i hereafter
refers to a configuration average. It allows us to explore
larger systems at a much lower computational cost, and we
have checked that both approaches lead to the same
conclusions.
To address the light-matter interaction from amicroscopic

point of view, we use an ab initio model of two-level
systems. The atomic cloud is modelled as an ensemble of
N ≫ 1point scatterers randomly distributed in a cube of side
length L with a uniform density ρ ¼ N=L3, with fixed
positions rj. The two-level atoms present a transition at
frequency ωa, of linewidth Γ, and they are driven with a
monochromatic Gaussian beam of waist w0 ¼ L=4 and
wave vector kL ¼ kẑ, detuned from the transition by
Δ ¼ ω − ωa, with Δ ≪ ωa so one can assume k ≈ ωa=c.
We consider a lowRabi frequencyΩLðrÞ ¼ dELðrÞ=ℏ ≪ Γ,
with d the electric dipole moment, so that the scattering
process is elastic. Using the Markov and rotating wave
approximations, and neglecting at first polarization effects,
the dynamics of the atomic dipoles βj is given by a set of N
coupled equations [31,32]:

dβj
dt

¼
�
iΔ −

Γ
2

�
βj −

id
2ℏ

ELðrjÞ

−
Γ
2

X
m≠j

expðikjrj − rmjÞ
ikjrj − rmj

βm; ð1Þ

where the last term describes the effective dipole-dipole
interaction. In the far-field limit, the radiated intensity at a
point rn̂ reads:

Iðn̂Þ ∝
���� idℏΓELðrÞ þ

eikr

ikr

XN
j¼1

e−ikn̂:rjβj

����2: ð2Þ

Whereas in the diffusive regime the average intensity
scattered around the forward direction decreases with the
sample sizeL as 1=L (known asOhm’s law for photons), it is
expected to present an exponential decay with the system
length in the localized regime. Although demonstrated
experimentally in 1D with transparent plates [15], no such
observation has been reported in higher dimensions. A
theoretical work suggested that the late-time radiation by
cold atoms may present different characteristics in the
localized and the nonlocalized regimes [33], yet the role
of subradiance was not discarded [34–36], which would
require a systematic study of scaling law of sample size,
atom number, and laser detuning. So far, our numerical
studies on configuration averaged time decay curves of the
transmitted intensity around the forward direction using the
coupled dipole model did not allow us to identify an
unambiguous signature of Anderson localization.
We now turn our attention to the statistics of the scattered

intensity around forward direction, as the localization
phase transition is expected to present a strong increase

FIG. 1. Scheme to detect fluctuations in the radiated intensity
by a cold atomic cloud. The inset presents a time signal obtained
from simulations realized with Eq. (1), for atoms at a finite
temperature.
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in fluctuations [5]. As we will show, this approach enables
us to identify a clear signature of Anderson localization
without the need for finite size scaling or similar demand-
ing numerical simulations. In the very dilute limit, multiple
scattering and collective effects are unable to correlate the
atomic dipoles, and the resulting speckle has a probability
distribution function that obeys Rayleigh law [37]:
PðIÞ ¼ e−I , where I hereafter refers to the normalized
intensity (I=hIi → I): hence, its variance σ2I is equal
to one. This behaviour is illustrated in Fig. 2(a) for a cloud
with a low density, below the localization threshold
(ρ < ρc ≈ 22=λ3).
For increased densities, deviations from Rayleigh law

appear, as can be observed in Fig. 2(b) for a density above
the transition threshold. Such deviations have been reported
in the past for strongly scattering systems [38,39], which
lead to theoretical efforts to include correlations between
the scatterers into the intensity statistics law [40–42]. In
particular, von Rossum and Nieuwenhuizen showed that,
for a Gaussian beam, the intensity statistics are given by
this [30]:

PðIÞ ¼
Z

i∞

−i∞

dx
πi

K0ð2
ffiffiffiffiffiffiffiffi
−xI

p
Þ exp ð−ΦcðxÞÞ; ð3aÞ

ΦcðxÞ ¼ gC

Z
1

0

dy
y
log

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ xy

gC

r
þ

ffiffiffiffiffi
xy
gC

r �
; ð3bÞ

with K0 as the modified Bessel function. Here g is a free
parameter called the conductance, which value is obtained
from fitting the intensity probability distribution function to
Eq. (3). In the case of a dilute sample, i.e., in the absence of
Anderson localization, the conductance extracted from the
dilute case of Fig. 2 yields arbitrarily large values,
corresponding to the divergent number of optical modes
in an infinite system. For convenience, we truncate
the values shown at gC ¼ 20 in Fig. 3(a). In the dense
regime however small values of g, close to unity
(gC ¼ 0.27� 0.02), are obtained. We stress that the con-
ductance as defined in Ref. [30] is related to the number of
accessible optical modes, different from the number of
eigenvalues as exploited in Refs. [16,24,25]. The latter,
also called the Thouless number, is rather related to the
number of atoms used in the simulations, and is hereafter
labelled gT . In the context of mesoscopic transport,
intensity fluctuations have been associated to short and
long range correlations as well as to universal conductance
fluctuations, with scaling as 1, 1=gC, or 1=g2C respectively
[43–46]. Another correlation function called C0 has been
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FIG. 2. Probability distribution function of the intensity in
(a) the dilute case (ρ ¼ 5=λ3, gC ≫ 20) and (b) the localized
regime (ρ ¼ 44=λ3, gC ¼ 0.27� 0.02). The black dashed curves
refer to Rayleigh law, the crosses were obtained from numerical
simulations of Eq. (1) and the red dash-dotted curve was
computed from Eq. (3). Intensity radiated in the angle ðθ;φÞ ¼
ð5π=12; 0Þ from the laser axis, from a system of size kL ¼ 32.4
and (a) N ¼ 684 or (b) N ¼ 6066, using 104 realizations.
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FIG. 3. Phase diagram for the (a) intensity variance, (b) con-
ductance gC, and (c) Thouless number gT in the ðΔ=Γ; ρλ3Þ plane.
Simulations realized for a homogeneous cubic cloud of side
length kL ¼ 32, using 800 realizations and an observation angle
θ ¼ 5π=12. The value of the conductance gC is saturated at the
arbitrary value of 20, as it diverges for nonlocalized samples. The
black curve corresponds to Eq. (4) for α ¼ 0.5.

PHYSICAL REVIEW LETTERS 123, 083401 (2019)

083401-3



studied [47] and related to averaged local density of states
[48]. Yet, while experiments with constrained geometries
measured such correlation functions [49], the regime of
Anderson localization has not been accessible to these
experiments.
Despite there does not exist a formal connection between

the conductance gC and the localization transition, it is
enlightening to monitor the behavior of gC in the range of
densities and energies known to exhibit the localization
transition [16]. We compare it directly to the Thouless
number gT, derived from the microscopic approach, and
which is known to be a proper indicator of the localization
transition based on the scaling analysis [28]: gT ¼
hγ−1n i−1=hδωni in the situation discussed in this Letter
[24], with γn the inverse lifetimes of the eigenmodes and
hδωni the average mode spacing. As presented in Figs. 3(b)
and 3(c), the conductance gC collapses from very large
values to small ones, in the same region where the Thouless
number predicts the transition. A noteworthy difference is
that the conductance collapses at the boundary of the
transition, but increases again deep in the localized regime,
reminiscent of fluctuations that diverge at a phase transition
[50]. Differently, the Thouless number presents small
values all over the localized regime. For this reason, the
fluctuations and the conductance may be a more accurate
tool to characterize the transition itself, as a scaling analysis
requires tuning the system size, requiring a much more
extensive study, be it experimental or theoretical.
Interestingly, the localization area corresponds to the

Ioffe-Regel criterion kl̄ < α where the scattering mean free
path l̄ becomes comparable to the wavelength [16]. Indeed,
accounting for the Lorentz-Lorenz shift into the evaluation
of l̄ leads to the following critical detuning to meet the
criterion [51,52]:

δc ¼
ρλ3

8π2
� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3α

ρλ3

4π2
− 1

s
: ð4Þ

We find that the threshold kl̄ ¼ 0.5 provides a good
approximation of the critical region, confirming that the
Ioffe-Regel provides a qualitative criterion on the locali-
zation transition in our system. Monitoring the variance
close to the transition (here realized at fixed detuning), we
observe a scaling σ2I ∼ 1=g2C at low conductance in agree-
ment with theoretical predictions [53]. This demonstrates
clearly that the fluctuations in the scattered intensity is a
suitable observable to monitor the localization transition.
While the access to the full light statistics may be

challenging for experiments, the deviation from Rayleigh
law is already captured by the intensity variance σ2I [54].
Indeed, as can be observed in Fig. 3(b), the variance
increases well above unity at the localization transition.
For example, the distribution function presented in
Fig. 2(b) corresponds to σ2I ≈ 6.8. We note that capturing

the intensity statistics using the dynamical speckle fluctua-
tions, as discussed in Fig. 1, requires monitoring the system
over many coherence times. While in the diffuse limit, this
timescale depends on the number of scattering events [54],
a dedicated study will be needed to understand how it is
altered by cooperative effects, in order to distinguish clearly
subradiance from Anderson localisation.
These striking similarities between the results of the

scaling analysis and the present ones suggest that the
intensity variance is an observable suitable to observe
the localization transition, and that the changes in the
conductance gC are indeed associated to that transition.
Furthermore, to circumvent the possible role of finite-size
effects, we have checked that our results hold both at fixed
system size kL varying N, and at fixed atom number N
varying kL. However, the size of the incident beam is
critical, as its waist must be significantly smaller than the
cloud. Indeed, we did not observe an increase of the
fluctuations for an incident plane wave or a Gaussian
beam with a large waist: this observation is consistent with
the fact that the radiation of a cloud illuminated by a larger
laser beam will present a strong component of single
scattering [35], which does obey Rayleigh statistics.
Finally, we have checked that the variance is a self-
averaging quantity; i.e., it can be computed either using
a fixed azimuth angle and different configurations, or by
studying the fluctuations over the azimuth angles with a
single configuration, leading to the same conclusions.
Our results hold so far in the scalar light approximation,

when polarization effects are neglected. While polarization
and near-field terms preclude localization [24], applying a
strong magnetic field B restores it [26,27], as the atomic
system is essentially split into three decoupled scattering
subsystems. The latter are associated to different transi-
tions, and get split in energy by an energy ΔB ¼ geμBB=ℏ,
with ge the Landé factor of the excited state and μB the Bohr
magneton. Turning our analysis to a full vectorial model
[29], the study of the light statistics shows that the intensity
variance captures the same phenomenology as the eigen-
value analysis [27]: it does not present significant devia-
tions from unity without magnetic field [see Fig. 4(a)], yet
in presence of a strong magnetic field (ΔB ¼ 103Γ) the
variance increases substantially when addressing the
m ¼ �1 excited atomic states [see Figs. 4(c) and 4(d)],
although the m ¼ 0 state does not present any signature of
the transition [see Fig. 4(b)]. The only difference that
appears between the case of scalar light and that of the
m ¼ �1 transitions in the presence of a magnetic field is
that, in the former case, the variance increases only at the
transition, and is close to unity in the localized regime far
from the transition [see Fig. 3(a)], whereas it appears to be
above unity in all the localized regime in the latter case.
Nevertheless, the overall excellent agreement of the
deviation of the variance from unity as compared to the
eigenvalue analysis, both in the regime considered and in
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the set of parameters at which it occurs, suggests that light
statistics is suitable to detect the localization transition.
In conclusion, we have filled the gap between the

macroscopic approach to localization, widely used in
experimental works, and the microscopic predictions
(eigenvalues analysis), thus demonstrating the equivalence
of the two approaches in the context of light scattering by
pointlike particles. We have shown that the statistics of
scattered light is a suitable observable to probe theAnderson
localization phase transition for light in 3D, differently from
the average intensity. Experimentally, this can be achieved
either through configuration averages using atoms that are
motionless over the timescale of the measurement, or by
studying the time fluctuations of the intensity as the atomic
motion makes the system explore various speckle configu-
rations. Interestingly, this approach does not require any
finite size scaling analysis. We note that the critical density
of 20=λ3 corresponds, for the case of Ytterbium on the
1S0→3 P1 transition at λ ¼ 556 nm, to an atomic density of
∼1014 atoms=cc, which can be realized in experiments [55].
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