
 

Derivation of the Holographic Dual of a Planar Conformal Field Theory in 4D

Nikolay Gromov*

Mathematics Department, King’s College London, The Strand, London WC2R 2LS, United Kingdom
and St. Petersburg INP, Gatchina 188 300, St. Petersburg, Russia

Amit Sever†

School of Physics and Astronomy, Tel Aviv University, Ramat Aviv 69978, Israel
and CERN, Theoretical Physics Department, 1211 Geneva 23, Switzerland

(Received 24 April 2019; published 23 August 2019)

We present the first-principles derivation of a weak-strong duality between the fishnet theory in four
dimensions and a discretized stringlike model living in five dimensions. At strong coupling, the dual
description becomes classical and we demonstrate explicitly the classical integrability of the model. We test
our results by reproducing the strong coupling limit of the four-point correlator computed before
nonperturbatively from the conformal partial wave expansion. Because of the extreme simplicity of our
model, it could provide an ideal playground for holography with no supersymmetry. Furthermore, since the
fishnet model and N ¼ 4 super Yang-Mills theory are continuously linked, our consideration could shed
light on the derivation of AdS=CFT for the latter. For simplicity, in this Letter we restrict our considerations
to a large subset of all states.
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Introduction.—In recent years, the ideas of holography
[1–3] conquered almost all corners of theoretical physics.
The idea that some (or any?) strongly coupled quantum
system with many degrees of freedom should have an
alternative dual description in terms of the gravity or string
theory in a higher dimensional spacetime is becoming more
and more popular. Despite this enormous attention the
holographic principle has received in the last two decades,
we are still lacking the first-principles derivation of it.
There are, however, numerous and extremely nontrivial
tests of the duality. Because of its strong-weak character, it
is very hard to produce these tests. In some special models,
such as N ¼ 4 super Yang-Mills (SYM) theory, tools such
as supersymmetric localization, or integrability, provide
ways to compute observables for arbitrary coupling
strengths and compare with the holographic predictions.
In this Letter, we will provide the first-principles

derivation of a holographic dual of the “fishnet model” [4]

L4d ¼ Ntr½j∂ϕ1j2 þ j∂ϕ2j2 þ ð4πÞ2ξ2ϕ†
1ϕ

†
2ϕ1ϕ2�; ð1Þ

in the planar expansion where N is taken large, while ξ2 is
held fixed but arbitrary (Here, we have suppressed double

trace interactions that are not relevant nonperturbatively
[5,6].). Here, ϕ1;2 are two N × N complex scalar fields.
The model can be obtained from N ¼ 4 SYM theory
in a double scaling limit and was shown to be conformal
and integrable in the planar limit [4,5,7,8]. This breaks
the su�ð4j4Þ superconformal symmetry down to uð1Þ1×
uð1Þ2 × soð1; 5Þ, leaving us with no supersymmetry at all.
Yet, being a solvable interacting conformal field theory
(CFT) in four dimensions, this model attracted a lot of
attention. In particular, one can compute the spectrum of
anomalous dimensions [7] as well as some structure con-
stants and correlation functions [6] at any ξ. In all of these
cases, there were indications of the existence of the holo-
graphic dual—the scaling dimensionsΔ generically scale as
ξ and the four-point correlation functions behave as e−ξAðz;z̄Þ
[6]. At the same time, these indications were somehow
puzzling, as the dual description of N ¼ 4 SYM theory
become weakly coupled at infinitely large λ, whereas the
fishnet model obtained in the opposite

ffiffiffi
λ

p ¼ R2
AdS=l

2
s → 0

limit [4]. Furthermore, the corresponding deformation is
known to produce tachyonic instability in the string back-
ground [9]. As a result, it is not clear how to link the
holographic string description ofN ¼ 4 SYM theory to that
of the fishnets or even if that is possible at all.
Indeed, the dual description presented here is not in

terms of a smooth string. Instead, we found a chain
of J particles or string bits with nearest-neighbor inter-
actions. More precisely the dual model action functional
Sdual ¼ ξ

R
dt
P

iLi, is given in terms of the Lagrangian
density
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Li ¼ −
_X2
i

2
−
YJ
k¼1

ð−XkXkþ1Þ−1
J − ηiðX2

i þ R2Þ þ R2: ð2Þ

Here, XiðtÞ ∈ R1;5 with −þþ � � � signature and ηiðtÞ,
R2ðtÞ are Lagrange multipliers. The world sheet coordi-
nates XðtÞ are further subjected to Virasoro-type con-
straints described below in (11) and (13). Note, in
particular, that the square root of the ‘t Hooft coupling
ξ stands in front of the action and plays the role of 1=ℏ.
The field RðtÞ looks like an anti–de Sitter (AdS) radius in

string units. It satisfies a dynamical evolution equation and
will be set to zero consistently. The Xi coordinates are not
projective and hence the action Sdual describes a discretized
string propagating on the five-dimensional light cone ofR1;5,
subject to the Virasoro constraints. The fifth dimension
naturally emerges when making the symmetries manifest.
It is encoded in a nontrivial way in all the original J four-
dimensional degrees of freedom and is related to an emergent
local scale invariance.
Below we give the derivation of this result and also show

how one can reproduce the classical limit of the anomalous
dimensions and also the four-point functions.
Derivation of the dual action.—One of the main features

of the fishnet theory is the simple structure of its Feynman
diagrams. In this Letter, we consider the uð1Þ sector of the
model, where the uð1Þ1 charge is J and the uð1Þ2 charge is
set to zero. It consists of all operators of the type
½∂mϕJ

1ðϕ2ϕ
†
2Þn…�, containing any number of derivatives,

J-scalar fieldsϕ1 and any neutral combination of ϕ2 and ϕ
†
2.

The Feynman diagrams that contribute to the correlation
functions of these operators and their conjugates are of
iterative fishnet type, after all ϕ2’s annihilate with ϕ†

2 (see
Fig. 1). It is possible to resum, at least formally, infinitely

many Feynman graphs by introducing the “graph-building”
operator B̂, defined by its integral kernel [4]

Bðfy⃗igJi¼1; fx⃗jgJj¼1Þ ¼
YJ
i¼1

ξ2=π2

ðy⃗i − y⃗iþ1Þ2ðx⃗i − y⃗iÞ2
: ð3Þ

Applying this operator once, we add one wheel to the graph
in Fig. 1; thus the sum of all wheels inside the graph forms a
geometric series

all wheels ¼ 1

1 − B̂
: ð4Þ

We see that the zeros of the denominator play a special role.
By diagonalizing B̂, one finds that the eigenfunctions are
parametrized by the continuous parameter Δ, conjugated to
the dilatation operator. The sum over the complete set of
eigenfunctions will involve the integration over Δ, which
then can be computed by residues giving distinct meaning
to those values of Δ where B̂ ¼ 1. Namely, those poles can
be identified as the anomalous dimensions of the local
operators. This procedure was exemplified in detail in [6].
The output of this discussion is that we need to solve
ðB̂ − 1ÞΨ ¼ 0, or, equivalently, acting on both sides withQ

i□i, to cancel factors 1=½4π2ðxi − yiÞ2�, we find

H∘ΨðfxigÞ ¼ 0; H ¼
YJ
i¼1

p⃗2
i −

YJ
i¼1

4ξ2

ðx⃗i − x⃗iþ1Þ2
; ð5Þ

where p⃗i ≡ −i∂⃗xi . Under the operator-state correspon-
dence, the wave function Ψ is dual to a local operator.
The key step in our derivation is to interpret (5) as the
constraint appearing in a system with time reparametriza-
tion symmetry t → fðtÞ, where t is conjugate to H. To see
this gauge symmetry manifestly, we write the Lagrangian
corresponding to the Hamiltonian H in (5). After solving

for p⃗i in terms of _x⃗i ¼ ð∂H=∂p⃗iÞ, we arrive at

L ¼ 2J − 1

2
2J

2J−1

�
1

γ

YJ
i¼1

⃗_x2i

� 1
2J−1

þ γ
YJ
i¼1

4ξ2

ðx⃗i − x⃗iþ1Þ2
; ð6Þ

where γ transforms under reparametrization t → fðtÞ as
γ → γ=f0 and (5) is the constraint that corresponds to fixing
γ ¼ 1. Instead of fixing the gauge γ ¼ 1, it is more
beneficial to eliminate the auxiliary field γ by setting it
to its extremum to obtain

S ¼ ξ

Z
Ldt ¼ 2Jξ

Z �YJ
i¼1

_x⃗2i
ðx⃗i − x⃗iþ1Þ2

� 1
2J

dt; ð7Þ

where the different branches of ξ translate to the multi-
valuedness of the interaction term. One may draw analogies

FIG. 1. Feynman diagram that contributes to the correlation
function of an operator of the form tr½∂mϕJ

1ðϕ2ϕ
†
2Þn…� and J ϕ†

1

scalars are all of fishnet type—made of an iterative wheel [10].
This structure can be resummed and leads to integrability [11].
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between (6) and (7) and the Polyakov and Nambu-Goto
actions, respectively. In this analogy, the initial equation (5)
corresponds to the Virasoro constraint. There is a number of
significant observations one can make about (7). First, we
see that the coupling ξ plays the role of 1=ℏ in the
quasiclassical analysis, in accordance with the previous
observations [6,7]. In particular, that explains the scaling
Δ ∼ ξ observed numerically in [7]. We note, however, that
our starting point (3) contained ξ2J, implying that all roots
eπin=Jξ; n ∈ Z should be considered. Different n’s corre-
spond to different branches in the spectrum, as we
demonstrate in Sec. III. In addition to the time reparamet-
rization symmetry, the action S in the form (7) is also
invariant under global conformal transformations, which is
of course a highly expected property for a CFT dual. In the
next section, we will make the conformal symmetry
manifest by uplifting the action into a 6D embedding space.
Finally, we comment about an interpretation of the action

(7). One may think of it as describing J string bits [12,13].
Each bit corresponds to a spike of a holographic string that
propagates at the AdS boundary, see Fig. 2. The dynamics
of the string segment between the spikes results in the
nearest-neighbors interaction of the model.
Embedding space formulation: As it is well known, the

conformal group in 4D coincides with the group of
rotations in R1;5. Under this identification, the flat space
coordinate xμ¼1;…;4 is mapped to the projective light cone
of R1;5, parametrized by XM

i ;M ¼ −1; 0; 1;…; 4, as

xμi ¼ Xμ
i =X

þ
i ; X2

i ¼ 0; Xþ
i ¼ X0

i þ X−1
i : ð8Þ

After this change of variables, the action (7) becomes

L ¼ 2J

�YJ
i¼1

_Xi
_Xi

−2XiXiþ1

� 1
2J

: ð9Þ

By uplifting to a projective space, we have introduced a
new local gauge symmetry Xi → giðtÞXi.
We now introduce auxiliary fields to disentangle the

action as

L ¼ −
X
i

�
_X2
i

2αi
þ ηiX2

i þ γ
Y
k

ð−XkXkþ1Þ−1
J

�
; ð10Þ

where the last term is independent of i. In order to get back to
(9), one should extremize in αi and γ, assuming

Q
αi ¼ γJ.

We also introduced the remaining constraintX2
i ¼ 0with the

Lagrange multipliers ηi. The symmetries of the action are
(1)manifest conformal symmetry, (2) time-dependent rescal-
ing symmetry Xi → giðtÞXi; αi → g2i ðtÞαi; γ → γ

Q
ig

2=J
i ðtÞ,

and ηi → g−2i ðtÞηi, (3) time reparametrization symmetry
t → fðtÞ; ηi → ηi=f0, and γ → γ=f0, and (4) translation
along the chain Xi → Xiþ1. To fix the gauge symmetries,
we can set αi ¼ γ ¼ 1, leading to the constraints

_X2
k ¼ 2

Y
i

ð−XiXiþ1Þ−1
J ≡ L; k ¼ 1;…; J; ð11Þ

which is very reminiscent of the Virasoro constraints in
the conformal gauge, telling us that the energy density is
zero along the string. Finally, we notice that there is
still one remaining gauge symmetry left t → fðtÞ; Xi →
Xi=

ffiffiffiffi
f0

p
; ηi → ηi=f0, which we fix by further imposingP

ηi ¼ J, with the Lagrange multiplier R2, leading to (2).
This action together with (11) is our main result (alternative
gauge choice L ¼ 1 could be convenient too).
Equations of motion: The variation of (2) with respect to

Xi gives

Ẍi ¼ 2ηiXi −
L
2

�
Xiþ1

Xiþ1Xi
þ Xi−1

XiXi−1

�
: ð12Þ

By contracting (12) with Xi and using that X2
i ¼ 0, we

arrive back at (11). Contracting (12) with _Xi, however,
leads to the secondary constraint that is analogous of the
second Virasoro constraint, imposing that

_XiXiþ1

XiXiþ1

þ
_XiXi−1

XiXi−1
¼ −∂t logL ð13Þ

does not depend on the site index i. (The relative sign may
look strange. However, in the continuum limit, the analog
of the rhs has the effect of correcting it [14].)
Finally, ηi can be extracted from the derivative of (13).

Instead, we eliminate ηi by introducing the SO(1,5) charge

density qMN
i ¼ 2 _X½M

i XN�
i . The equation of motion (12) can

be equivalently written asFIG. 2. Spiky string in AdS.
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_qi ¼
L
2
ðjiþ1 − jiÞ; jMN

i ¼ 2
X½M
i−1X

N�
i

Xi−1Xi
; ð14Þ

where ji can be interpreted a SO(1,5) current density. The
SO(1,5) charge is given by QMN ≡ ξQMN ¼ ξ

P
iq

MN
i . We

can always assume thatQMN is block diagonal, with nonzero
elements Q−1;0 ¼ iD, Q1;2 ¼ S1, and Q3;4 ¼ S2, where
D ¼ Δ=ξ and Sa ¼ Sa=ξ are the appropriate notations for
the large ξ classical limit.
After introducing R2, we are no longer constrained to the

light cone and one could be worried about the consistency
of the initial condition X2

i ¼ −R2 ¼ 0. By contracting (12)
with Xi, we get 2∂2

t R2 ¼ ηiR2. Since
P

iηi ¼ J we obtain
2∂2

t R2 ¼ R2, meaning that once we set R ¼ 0 at some
moment of time it will stay so forever.
Integrability: Our fish chain model at R ¼ 0 is dual to the

integrable fishnet model and hence it is expected to be
integrable too. Similar to the Toda chain, we find a pair of
space- and timelike connections, dependant on the spectral
parameter u, LiðuÞ and V iðuÞ, that satisfy the zero curvature
condition [15]

_Li ¼ V iþ1Li − LiV i: ð15Þ

This condition ensures that each coefficient of the poly-
nomial TðuÞ ¼ trΩðuÞ, where Ω≡ LJ;…;L2L1, gives an
integral of motion, constant in time on equations of
motions. In the irreducible representation (irrep) 6 of
SO(1,5), these matrices are

L6
i ¼ u2 þ uqi þ

q2i
2
; V6

i ¼
ji
u
L
2
: ð16Þ

To derive the discrete zero curvature condition (15), we use
(14) and the identity ðq2i ÞMN ¼ −LXM

i X
N
i , which implies,

using (12), that ∂tq2i¼Lðjiþ1qi−qijiÞ and jiþ1q2i−q2i ji¼0.
Interestingly, the constraint (11) results in the relation
T6ð0Þ ¼ 1. Similar to (16), the space- and timelike con-
nections in the irrep 4 take the form L4

k ¼ u −
ði=2ÞqMN

k ΣMN and V4
k ¼ −ðiL=4uÞjMN

k ΣMN , where ΣMN

are the 6D σ matrices. L6 can be constructed from L4
k by

projecting L4
k ⊗ L4

k on the 6. Finally, one can show [14] that
the Poisson bracket fTðuÞ; TðvÞg ¼ 0.
The key objects in integrability are the four quasimo-

menta pa, which are defined as det½Ω4ðuÞ − uJeipaðuÞ� ¼ 0.
Their large u asymptotic is determined by the global
charges pa ≃ ½ð�Δ� S1 � S2Þ=2ξu�. At the origin pa’s
have a logarithmic singularity �iJ log u. In addition, paðuÞ
has square-root singularities, coming from the diagonaliza-
tion procedure. Together they form an algebraic curve,
whose genus depends on the number of degrees of freedom.
We expect the number of cuts to be equal to the number of
independent cross ratios for 2J points (i.e., 2 for J ¼ 2 and
8J − 15 for J > 2). Each a cycle on the curve corresponds

to an action variable Ia ≡ ðξ=πiÞ Ha pðuÞdu. The action
variables are expected to become integers in the Bohr-
Sommerfeld quantization procedure. We postpone more
detailed investigation of the algebraic curve and separation
of variables in this model for the future [14].
Explicit example.—First we consider the simplest case

where J ¼ 2. This case was studied in detail at the quantum
level, in particular, the spectrum is know exactly as [8]

Δt¼2=4 ¼ 2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðS1þ1Þ2þ1∓ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðS1þ1Þ2þ4ξ4

qr
; ð17Þ

where � corresponds to the twist t ¼ 2 and twist t ¼ 4
branches in the spectrum. The four-point function was
computed in [6] as an infinite sum. In the classical limit,
it was shown to sit on saddle points with classical dimension
and spins that are related to the two conformal cross ratios as

S2cl ¼ � 4ξ2θ2

θ2 þ ρ2
and Δ2

cl ¼ S2cl ∓ 4ξ2; ð18Þ

where the second relation follows from (17). Here, ρ and θ
parametrize the two conformal cross ratios u ¼ ½4=ðcos θ −
cosh ρÞ2� and v¼f½ðcosθþ coshρÞ2�=½ðcosθ− coshρÞ2�g.
Furthermore, the four-point correlation function itself
takes the form e−ξAcl (eiξAcl ) for t ¼ 2 (t ¼ 4), with
Acl ¼ 2i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θ2 þ ρ2

p
. Next, we try to reproduce these data

from our classical dual description.
For J ¼ 2 we have two 6D null vectors, X1ðtÞ and X2ðtÞ.

Using global symmetries we can always go to the center of
mass frame and set the last two components to zero
X1;2¼ðr= ffiffiffi

2
p Þðcoshs;sinhs;�cosϕ;∓ sinϕ;0;0Þ. In this

parametrization, the coordinates s and ϕ are conjugate to
conserved charges, D ¼ ir2 _s and S1 ¼ r2 _ϕ. The constraint
(11) gives�4 ¼ r4ð_s2 þ _ϕ2Þ ¼ D2 þ S2

1, where the� sign
comes from the different choice of the branch of the root on
the rhs of (11). It perfectly reproduces the spectrum [(17)
and (18)] in the classical limit where S1, Δ ∼ ξ → ∞, with
different twists t ¼ 2, 4 corresponding to different branches
of the interaction term. Like in N ¼ 4 SYM theory, the
strong coupling limit of a correlator is expected to be given
by eiS on a classical solution in the dual model. The
classical action, with the constraint taken into account,
becomes S ¼∓ 4ξ

R ðdt=r2Þ. We see that it is beneficial to
define the proper time dτ ¼ ½dt=r2ðtÞ�, in terms of which

S ¼∓ 4ξτ; s ¼ −iDτ; ϕ ¼ S1τ: ð19Þ

Next, computing the cross ratios between X1;2ðτ ¼ 0Þ and
X1;2ðτ ¼ TÞ, we find in our parametrization θ ¼ S1T and
ρ ¼ iDT. Next, solving for S1 and T, with the constraint
S2
1 −D2 ¼ �4, we find T2 ¼ � 1

4
ðθ2 þ ρ2Þ and S2

1 ¼
�½4θ2=ðθ2 þ ρ2Þ�, leading via (19) to eiS ¼ e−2iξ

ffiffiffiffiffiffiffiffiffi
θ2þρ2

p
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and eiS ¼ e−2ξ
ffiffiffiffiffiffiffiffiffi
θ2þρ2

p
for t ¼ 2 and t ¼ 4 correspondingly,

in perfect agreement with [6].
Discussion and speculation.—There are two fundamen-

tally important properties of the fish chain model (2). First,
the square root of the ’t Hooft coupling constant ξ stands in
front of the action, playing the role of 1=ℏ. It emerged
naturally from our interpretation of the graph-building
operator. Second, the fish chain propagates in five-dimen-
sional target space, see Fig. 3. The fifth dimension has
emerged from the principle of realizing all symmetries in a
manifestly covariant way. It may be thought of as a concrete
realization of the holographic map and the original pre-
diction of ’t Hooft [16].
Going away from the model (1), one may add back the

rest of the fields of N ¼ 4 SYM theory in a controlled
expansion around the fishnet limit [17] and incorporate
their effect on the dual fish chain. Such expansion may
open the path for a rigorous proof of AdS=CFT. One way in
which this path may materialize is the following. The radius
R2 came about as a Lagrange multiplier, associated with a
global rescaling gauge symmetry. It is consistently set to
zero in the relevant classical solutions discussed above. If
the correction away from the fishnet limit will stabilize it at
some fixed R2 > 0, then the discretized string will propa-
gate in AdS5 instead of the light cone ofR1;5. Moreover, for
fixed R2 > 0, the model has a smooth large J continuum
limit where XiðXiþ1 − XiÞ ≃ 1

2
ϵ2X00. As a result, a new local

time reparametrization symmetry emerges. Using similar
manipulations to the ones in Sec. II, one arrives at a string
action in AdS5 that is subject to the standard local Virasoro
constraint, including a constant contribution from the
extension of the string on the sphere [14]. In the J → ∞
limit we may also be able to find a connection with the
proposal of [18].
There are many future directions to pursue, some of them

we list as follows. (i) One would like to extend the fish
chain model away from the uð1Þ sector by incorporating

extra ϕ2 fields. (ii) Similar to the string in AdS5 × S5, our
action is highly nonlinear and its quantization is not notably
straightforward. To start, one may incorporate quasiclass-
ical corrections. (iii) Systematic 1=N expansion should lead
to fish chain interaction vertices. (iv) The open fish chain
version of the model, dual to Wilson lines in the ladder limit
[19], can be obtained from the derivation above by adding
two more sites, replacing p⃗2

1;Jþ2 → p⃗2
1;Jþ2 þm2 and taking

the large mass limit. (v) We expect the fish chain to exhibit
T duality. (vi) The simplicity of the classical model could
help with the separation of variables approach [20,21] to
the correlation functions in N ¼ 4 SYM theory.
Finally, analogous fishnet diagrams also exist in two,

three, and six dimensions [11], and one may try to derive
their duals. In particular, one may consider the large twist
limit of the Aharony-Bergman-Jafferis-Maldacena model
[22,23] or more general fishnets, which could also include
fermions [24].
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