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We present the solution to a model of fermions hopping between neighboring sites on a line with random
Brownian amplitudes and open boundary conditions driving the system out of equilibrium. The average
dynamics reduces to that of the symmetric simple exclusion process. However, the full distribution encodes
for a richer behavior, entailing fluctuating quantum coherences which survive in the steady limit. We
determine exactly the steady statistical distribution of the system state. We show that the out-of-equilibrium
quantum coherence fluctuations satisfy a large-deviation principle, and we present a method to recursively
compute exactly the large-deviation function. As a by-product, our approach gives a solution of the
classical symmetric simple exclusion process based on fermion technology. Our results open the route
towards the extension of the macroscopic fluctuation theory to many-body quantum systems.
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Introduction.—Nonequilibrium phenomena are ubiqui-
tous in nature. Understanding the fluctuations of the flux of
heat or particles through systems is a central question in
nonequilibrium statistical mechanics. The last decade has
witnessed tremendous conceptual and technical progress in
this direction for classical systems, starting from the exact
analysis of simple models [1–3], such as the symmetric
simple exclusion process (SSEP) [4–7], via the under-
standing of fluctuation relations [8–10] and their interplay
with time reversal [11,12], and culminating in the formu-
lation of macroscopic fluctuation theory (MFT), which is
an effective theory adapted to describe transport and its
fluctuations in diffusive classical systems [13]. Whether
MFT may be extended to the quantum realm is yet
unexplored.
In parallel, the study of quantum systems out of

equilibrium has received a large amount of attention in
recent years [14–17]. Experimentally, unprecedented con-
trol of cold atom gases gave access to the observation of
many-body quantum systems in inhomogeneous and iso-
lated setups [18–22]. Theoretically, results about closed
quantum systems have recently flourished, with a better
perception of the roles of integrability and chaos or disorder
[23–34]. In critical or integrable models, a good under-
standing has been obtained with a precise description of
entanglement dynamics and quenched dynamics, as well as
transport [35–46]. These efforts culminated in the develop-
ment of a hydrodynamic picture adapted to integrable
systems [47,48]. However, these understandings are
restricted to closed, predominantly ballistic, systems.
Many quantum transport processes are diffusive rather

than ballistic [49] and, to some extents, physical systems
are generically in contact with external environments.
It is thus crucial to extend the previous studies by devel-
oping simple models for fluctuations in open, quantum

many-body, locally diffusive, out-of-equilibrium systems.
Putting aside the quantum nature of the environments leads
us to consider model systems interacting with classical
reservoirs or noisy external fields. In the context of quantum
many-body systems, and especially quantum spin chains, the
study of such models has recently been revitalized [50–57],
partly in connection with random quantum circuits [58–64],
as a way to get a better understanding of entanglement
production or information spreading.
In this work, we introduce and solve an iconic example

of such models. It is a stochastic variant of the Heisenberg
XX spin chain. It codes for typical features of quantum
many-body at scales smaller than the coherence length (to
keep interference effects) but larger than the mean free path
(to include diffusion). It describes fermions hopping from
site to site on a discretized line, but with Brownian hopping
amplitudes, and interacting with reservoirs at the chain
boundaries. For reasons explained below, we may call this
model the quantum SSEP. Its average dynamics reduces to
the classical SSEP, but the model codes for the fluctuations
around this mean behavior. Although decoherence is at play
in the mean behavior, fluctuating quantum coherences
survive to the noisy interaction. Their magnitudes typically
scale proportionally with the inverse of the square root of
the system size. We characterize completely the steady
measure on the system state which encodes for the
fluctuations of the quantum coherences and occupation
numbers at large values of time. We also present a recursive
method to compute exactly, order by order, the large-
deviation function of these fluctuations. These findings
open the route towards the extension of the MFT [13] to
many-body quantum systems.
The open quantum SSEP.—For an open chain in contact

with external reservoirs at their boundaries, the quantum
SSEP dynamics results from the interplay between unitary,
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but stochastic, bulk flows with dissipative, but determin-
istic, boundary couplings. The bulk flows induce unitary
evolutions of the system density matrix ρt onto
e−idHtρteidHt with Hamiltonian increments

dHt ¼
ffiffiffiffi
D

p XL−1
j¼0

ðc†jþ1cjdW
j
t þ c†jcjþ1dW̄

j
tÞ ð1Þ

for a chain of length L; where cj and c†j are canonical
fermionic operators, one pair for each site of the chain, with
fcj; c†kg ¼ δj;k; and Wj

t and W̄j
t are pairs of complex

conjugated Brownian motions, one pair for each edge along
the chain, with quadratic variations dWj

tdW̄k
t ¼ δj;kdt. This

model was shown to describe the effective dynamics of the
stochasticHeisenbergXX spin chainwith dephasingnoise in
the strongnoise limit [65]. It codes for adiffusiveevolutionof
the number operators n̂j ¼ c†jcj, with the parameterD being
the diffusion constant. This model is one of the simplest
models of quantum stochastic diffusion. It shares similarities
with that of Ref. [57]. Exact results concerning the statistical
mean behavior of this model, and more generally of the
dephasing Heisenberg spin chain, were described in
Refs. [66–69]. Properties of the closed periodic version of
this model were deciphered in Ref. [70] via a mapping to
random matrix theory. We set D ¼ 1 in the following.
Assuming the interaction between the chain and the

reservoirs to be Markovian, the contacts with the external
leads can be modeled by Lindblad terms [71]. The resulting
equations of motion read

dρt ¼ −i½dHt; ρt� −
1

2
½dHt; ½dHt; ρt�� þ LbdryðρtÞdt; ð2Þ

with dHt as above and Lbdry being the boundary
Lindbladian. The first two terms result from expanding
the unitary increment ρt → e−idHtρteidHt to second order
(because the Brownian increments scale as

ffiffiffiffiffi
dt

p
). The third

term codes for the dissipative boundary dynamics, with
Lbdry ¼ α0L

þ
0 þ β0L−

0 þ αLL
þ
L þ βLL−

L and

Lþ
j ð•Þ ¼ c†j • cj −

1

2
ðcjcþj •þ • cjc

†
jÞ; ð3Þ

L−
j ð•Þ ¼ cj • c

†
j −

1

2
ðc†jcj •þ • c†jcjÞ; ð4Þ

where the parameters αj (βj) are the injection (extrac-
tion) rates.
The dynamics being noisy, so is the density matrix, and

hence the quantum expectations such as the mean quantum
occupation numbers nj ¼ Trðn̂jρtÞ. Their stochastic aver-
ages E½nj� evolve according to

∂tE½nj� ¼ Δdis
j E½nj� þ

X
k∈f0;Lg

δj;kðαkð1 − E½nk�Þ − βkE½nk�Þ;

with Δdis
j being the discrete Laplacian, Δdis

j nj ¼
njþ1 − 2nj þ nj−1, illustrating the diffusive bulk dynamics
and the boundary injection or extraction processes. At large
values of time, they reach a linear profile,

n�j ≔ lim
t→∞

E½nj� ¼
naðLþ b − jÞ þ nbðjþ aÞ

Lþ aþ b
; ð5Þ

with na ≔ ½α0=ðα0 þ β0Þ�, nb ≔ ½αL=ðαL þ βLÞ�,
a ≔ ½1=ðα0 þ β0Þ�, b ≔ ½1=ðαL þ βLÞ�, associated with a
steady mean flow from one reservoir to the other. In the
large size limit, L → ∞ at x ¼ i=L fixed, this mean profile,
n�ðxÞ ¼ na þ xðnb − naÞ, interpolates linearly the two
boundary mean occupations na and nb, in agreement with
Refs. [57,66–69].
In themean, the off-diagonal quantumexpectationsGji ≔

Trðc†i cjρtÞ vanish exponentially fast, limt→∞E½Gji� ¼ 0 for
j ≠ i, hence reflecting decoherence due to destructive
interferences induced by the noise. However, this statement
is only valid in themean as fluctuating coherences survive at
subleading orders with a rich statistical structure, with long-
range correlations.
The steady state: Fluctuations and coherences.—As

exemplified by the above one-point functions, a steady
state is attained at large values of time in the sense that the
distribution of quantum expectations reaches a stationary
value. Equivalently, the limit limt→∞E½FðGtÞ� exists for any
smooth function F of the matrix of two-point quantum
expectations G, and this defines an invariant measure E∞½•�
of the flow [Eq. (2)], which we shall denote by ½•� to
simplify the notation. Diagonal elements Gjj code for
occupation numbers, while the off-diagonal elements Gji

code for coherences, and hence ½•� codes for their steady
statistics.
Amongst the two-point functions E½GijGkl�, only those

with fi ¼ j; k ¼ lg and fi ¼ l; j ¼ kg survive at large time
values; the others decrease exponentially fast. This leaves
us with three possible configurations: ½G2

ii�, ½GiiGjj�, and
½GijGji�, with j ≠ i, coding respectively for quantum
occupation and coherence fluctuations. They are deter-
mined by solving the stationarity equations for the invariant
measure (see the Supplemental Material [72]):

½GijGji�c ¼
ðΔnÞ2ðiþaÞðL− jþbÞ

ðLþaþb−1ÞðaþbþLÞðaþbþLþ1Þ ;

½GiiGjj�c ¼−
ðΔnÞ2ðiþaÞðL− jþbÞ

ðLþaþb−1ÞðaþbþLÞ2ðaþbþLþ1Þ ;

½G2
ii�c ¼

ðΔnÞ2ð2ðiþaÞðL− iþbÞ− ðLþaþbÞÞ
2ðaþbþLÞ2ðaþbþLþ1Þ ;

for i < j with Δn ¼ nb − na and ½GiiGjj�c ¼
½GiiGjj� − ½Gii�½Gjj�. The first lesson is that coherences
are present in the large-time steady state, as their
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covariances do not vanish exponentially but remain finite.
At large size, L → ∞ with x ¼ i=L, y ¼ j=L fixed, their
second moments behave as

½GijGji�c ¼
1

L
ðΔnÞ2xð1 − yÞ þOðL−2Þ; ð6Þ

½GiiGjj�c ¼ −
1

L2
ðΔnÞ2xð1 − yÞ þOðL−3Þ; ð7Þ

for x < y, while ½G2
ii�c ¼ ð1=LÞðΔnÞ2xð1 − xÞ þOðL−2Þ.

The second lesson is, on one hand, that these fluctuating
coherences scale as 1=

ffiffiffiffi
L

p
in the thermodynamic limit, and

on the other hand, that the correlations between the
quantum occupation numbers ni and nj at distinct sites i ≠
j scale as 1=L2, and hence are subleading. These corre-
lations coincide with those of the statistical mean of the
number operator two-point expectations, for reasons
explained below, but this coincidence does not hold for
higher (N > 3) point correlations.
These facts hold for higher-order cumulants

½Gi1j1…GiNjN �c of the matrix of two-point quantum expect-
ations. These cumulants are nonvanishing only if the sets
fi1;…; iNg and fj1;…; jNg coincide so that the N-tuple
(j1;…; jN) is a permutation of (i1;…; iN). With such a
product Gi1j1…GiNjN , we can associate an oriented graph
with a vertex for each point i1;…; iN and an oriented edge
from i to j for each insertion of Gji. These graphs may be
disconnected. The condition that the sets fi1;…; iNg and
fj1;…; jNg coincide translates into the fact that the number
of ongoing edges equals that of outgoing edges, at each
vertex. For instance, ½Gii� is represented by [ ], ½GiiGjj�
for i ≠ j by [ ], ½GijGji� for i ≠ j by [ ] and ½G2

ii�
by [ ].
The claim is that expectations of single-loop diagrams,

corresponding to the expectations of cyclic products
½Gi1iN…Gi3i2Gi2i1 �c, are the elementary building blocks in
the large-size limit. They scale proportionally to 1=LN−1 in
the thermodynamic limit

½Gi1iN…Gi3i2Gi2i1 �c ¼
1

LN−1 gNðx1;…;xNÞþOðL−NÞ; ð8Þ

with xp ¼ ip=L. The expectations gN depend on which
sector the points x ≔ ðx1;…; xNÞ belong to, with the
sectors indexing how the ordering of the points along
the chain match or unmatch that along the loop graph. Let
us choose to fix an ordering of the points along the chain so
that 0 ≤ x1 < � � � < xN ≤ 1, and let σ be the permutation
coding for the ordering of the point vertices around the loop
so that by turning around the oriented loop, one succes-
sively encounters the vertices labeled by xσð1Þ; xσð2Þ;…, up
to xσðNÞ. There are ðN − 1Þ!=2 sectors because the ordering
around the loop is defined up to cyclic permutations and

because reversing the orientation of the loop preserves the
expectations. Let us then set fσNðxÞ ≔ gNðxσð1Þ;…; xσðNÞÞ.
The fσN’s are recursively determined by a set of equations

which arise from the stationarity conditions of the invariant
measure (see the Supplemental Material [72]). First,
stationarity in the bulk imposes that Δxjf

σ
NðxÞ ¼ 0 for

all j, with Δx being the Laplacian with respect to x, as a
consequence of the bulk diffusivity. Second, the couplings
at the boundaries freeze the fluctuations so that

fσNðxÞjx1¼0 ¼ fσNðxÞjxN¼1 ¼ 0: ð9Þ

Third, contact interactions due to noisy hoppings impose
two conditions on expectations at the boundary between the
sectors σ and πj;jþ1σ, with πj;jþ1 being the permutation
transposing j and jþ 1. The ordering of the point vertices
in the sectors σ and πj;jþ1σ differs by the exchange of xj
and xjþ1, so that xjþ1 ¼ xj at these boundaries. The first
contact condition is the continuity condition:

fσNðxÞjxjþ1¼xj ¼ f
πj;jþ1σ
N ðxÞjxjþ1¼xj : ð10Þ

To write the second contact condition, let us define j−� (jþ� )
to be the σ preimage of j (jþ 1), i.e., j ¼ σðj−� Þ and
jþ 1 ¼ σðjþ� Þ. Since the vertices xjþ1 and xj are identified
at these sector boundaries, the loop graph splits into two
subloops touching at the vertex xj, one including the circle
arc xσðj−�−1Þ; xj; xσðjþ� þ1Þ, and the other containing the circle
arc xσðjþ� −1Þ; xj; xσðj−� þ1Þ, denoted lσ;−

j and lσ;þ
j , respec-

tively. The second contact condition is the Neumann-like
matching condition

ð∇xj −∇xjþ1
ÞðfσNðxÞ þ f

πj;jþ1σ
N ðxÞÞjxjþ1¼xj

¼ 2ð∇xj ½Rþ
j f

σ�ðxÞÞð∇xj ½R−
j f

σ�ðxÞÞ; ð11Þ

with ½R�
j f

σ� being the expectations of the reduced sub-

loops lσ;�
j . Equations (9)–(11) allow us to recursively

compute the building-block loop expectations [Eq. (8)].
See Fig. 1 for a graphical representation of Eq. (11).
Furthermore, connected expectations of pinched graphs

obtained by identifying points in single-loop graphs are
obtained by continuity from the expectations of the
corresponding parent loop graphs, thanks to Eq. (10).

FIG. 1. Graphical representation of the contact relation
[Eq. (11)].
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They are of order 1=LN−1 with N being the number of
edges in the pinched graph (and hence the number of
insertions of matrix elements of G). All other connected
expectations of disconnected graphs are subleading in the
large-size limit.
The conditions (9), (10), and (11) allow us to determine

all leading expectations recursively. For N ¼ 3, there is
only one sector, and g3ðx; y; zÞ ¼ ðΔnÞ3xð1 − 2yÞð1 − zÞ
for x < y < z, so that

½GikGkjGij�c ¼
1

L2
ðΔnÞ3xð1−2yÞð1− zÞþOðL−3Þ; ð12Þ

with x ¼ i=L, y ¼ j=L, and z ¼ k=L (i < j < k). For
N ¼ 4, there are three sectors, associated with the identity
and the transpositions π1;2 and π2;3, respectively:

For x1 < x2 < x3 < x4, their expectations are, respectively,

1

L3
ðΔnÞ4x1ð1 − 3x2 − 2x3 þ 5x2x3Þð1 − x4Þ;

1

L3
ðΔnÞ4x1ð1 − 3x2 − 2x3 þ 5x2x3Þð1 − x4Þ;

1

L3
ðΔnÞ4x1ð1 − 4x2 − x3 þ 5x2x3Þð1 − x4Þ;

up to OðL−4Þ contributions.
The scaling behavior of the single-loop expectations

[Eq. (8)] ensures that the fluctuations of the matrix of
quantum two-point expectations G satisfy a large-deviation
principle, in the sense that their generating function is such
that ½eTrðAGÞ� ≍L→∞ eLFðAÞ for some function FðAÞ, called
the large-deviation function,

FðAÞ ¼ lim
L→∞

1

L
log½eTrðAGÞ�: ð13Þ

This function admits a series expansion,
FðAÞ ¼ P

Nð1=N!ÞFðNÞ, with the FðNÞ’s given by the
multiple sums L−N P

i1;…;iN ½Gi1iN � � �Gi3i2Gi2i1 �cðAi1i2 � � �
AiNi1Þ, which converge to multiple integrals. To the lowest
order,

FðAÞ ¼
Z

1

0

dx n�ðxÞAðx; xÞ

þ ðΔnÞ2
Z

1

0

dx
Z

1

x
dy xð1 − yÞAðx; yÞAðy; xÞ þ � � � :

ð14Þ

Higher orders can be recursively computed by using
Eqs. (9)–(11).

Sketch of proof.—Since both the Hamiltonian increments
[Eq. (1)] and the Lindbladians [Eq. (3)] are quadratic in the
fermionic creation and annihilation operators, the stochas-
tic evolution [Eq. (2)] preserves Gaussian states of the form
ρt ¼ Z−1

t ec
†Mtc, with Mt being a L × L matrix and

Zt ¼ Trðec†MtcÞ. These density matrices are parametrized
byMt or, equivalently, by the matrix of quantum two-point
expectations Gij ¼ Trðρtc†jciÞ. One can show that
Gt ¼ ½eMt=ð1þ eMtÞ�. Equation (2) then becomes a sto-
chastic equation for Mt or Gt. For instance, for
0 ≠ i < j ≠ L,

dGij ¼ −2Gijdtþ iðGi;j−1dW̄
j−1
t þGi;jþ1dW

j
tÞ

− iðGi−1;jdWi−1
t þGiþ1;jdW̄i

tÞ; ð15Þ

with similar equations for Gii and at the two chain
boundaries. Imposing the stationarity of the measure
amounts to demanding that the statistical expectations
½FðGtÞ� are time independent for any function F. Since
the Itô derivatives of polynomials in Gt are polynomials in
Gt of the same degrees, the stationarity conditions are sets
of linear equations on moments of a given order. There are
two types of contributions arising from the Itô derivatives
of polynomials: one completing the drift term in Eq. (15)
to produce discrete Laplacians acting on products of
Gt’s, the other producing contact interactions. For
instance, dGkjdGl;jþ1jcontact ¼ −ðGk;jþ1dWjÞðGljdW̄jÞ ¼
−Gk;jþ1Gljdt, which implements the transposition of the
adjacent points j and jþ 1. As a consequence, the Itô
derivatives of graphs coding for products of Gt ’s with
adjacent indices induce a reshuffling of the connections of
these graphs. See Fig. 2 for an illustration. Thus, the
stationarity conditions yield relations between expectations
of reshuffled graphs, from which the relations (9), (10), and
(11) can be deduced (see the Supplemental Material [72]).
More details will be described elsewhere [73].
Connecting to the classical SSEP.—The mean density

matrix ρ̄t ≔ E½ρt� evolves according to the Lindblad equa-
tion ∂tρ̄t ¼ Lbulkðρ̄tÞ þ Lbdryðρ̄tÞ, with Lbdry defined in
Eq. (3) and the bulk Lindbladian

Lbulkðρ̄tÞ ¼ −
1

2

XL−1
j¼0

ð½c†jþ1cj; ½c†jcjþ1; ρ̄t�� þ H:cÞ: ð16Þ

This Lindblad dynamics has been studied in Refs. [66–69].
For density matrices diagonal in the occupation number

FIG. 2. Graphical representation of the reshuffling relation.
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basis, it codes for the time evolution of SSEP.
Asymptotically in time, decoherence is effective and the
mean density matrix is diagonal, ρ̄t ¼

P
½n� Q̄t½n�P½n�,

where the P½n�’s are the projectors on the occupation
number eigenstates j½n�i and Q̄t½n� the mean populations.
The P½n�’s are products of projectors P

nj

j on each site of the
chain, with nj ¼ 0 (nj ¼ 1) for empty (full). On adjacent
pairs of projectors, the bulk Lindbladian acts as

LbulkðP1
jP

0
jþ1Þ ¼ −P1

jP
0
jþ1 þ P0

jP
1
jþ1;

LbulkðP0
jP

1
jþ1Þ ¼ −P0

jP
1
jþ1 þ P1

jP
0
jþ1;

whereas LbulkðP0
jP

0
jþ1Þ ¼ 0 and LbulkðP1

jP
1
jþ1Þ ¼ 0. This

is equivalent to the SSEP transition matrix.
As a consequence, the SSEP generating function for the

occupation number fluctuations can be identified with the
statistical average of the generating function of quantum
expectations of the number operators,

he
P

j
ajnjissep ¼ Trðρ̄e

P
i
ain̂iÞ ¼ ½Trðρe

P
i
ain̂iÞ�;

with n̂i ¼ c†i ci. It can be computed using Wick’s theorem,
so that the SSEP cumulants read

hnj1 � � �njN icssep ¼
ð−ÞN−1

LN−1

X
σ

fσNðxÞ þOðL−NÞ; ð17Þ

with xk ¼ jk=L all distinct. The sum is over permutations σ
modulo cyclic permutations (see the Supplemental Material
[72]). The expectations [Eq. (8)] of the matrix of quantum
two-point expectations cannot be reconstructed from the
SSEP expectations (for N ≥ 4), because the latter are
symmetric under permutations and hence only involve
the sum of the sectors.
Discussion.—We have introduced a quantum extension

of the SSEP and outlined how to solve it exactly by
characterizing its invariant measure and computing the
large-deviation function of the matrix of quantum two-
point expectations. The quantum SSEP is a simple, if not
the simplest, model coding for diffusive behavior of
quantum operators in a many-body fermionic system. In
the mean, it reduces to the classical SSEP so that the
statistical averages of the quantum expectations of the
number operators coincide with those of the classical SSEP.
The quantum SSEP is strictly finer than its classical

counterpart and contains much more information, including
fluctuations of quantum coherences. Although decoherence
is at work on the mean steady state, we have observed and
quantified subleading fluctuating coherences which are not
visible in the mean behavior [66–68]. In the thermody-
namic large-size limit, the system state approaches a self-
averaging nonequilibrium state dressed by occupancy
and coherence fluctuations whose amplitudes scale

proportionally to 1=
ffiffiffiffi
L

p
. We have described how to

compute the large-deviation function for these fluctuations,
order by order. One simple experimental route to probe
these coherences consists in transposing to our system the
recently proposed setup [57] to conduct interferometry
experiments between two parts of the system. Another
possibility to generate echoes of coherence effects in the
occupancy number correlations consists in injecting fer-
mions in quantum states which are not eigenstates of the
occupancy operators.
As an example of quantum out-of-equilibrium exclusion

processes and of fluctuating quantum discrete hydrody-
namics, our findings open several new research directions.
The first concerns the integrable structure underlying the
exact solution we have presented and its connection with
the existing solution methods for classical exclusion
processes [74–77]. The second concerns the extension of
our work to deal with the quantum analogue of the
asymmetric simple exclusion process (ASEP). We have
already noticed that the appropriate generalization amounts
to coupling the fermionic system to quantum noise [78,79].
But the most important ones deal with using the present
model, and its generalizations to interacting systems, to
formalize the extension of the MFT [13] to many-body
quantum systems. Proposing such quantization of the MFT
incorporating the fluctuating quantum coherences requires
going beyond the statistical mean behavior. It has been
observed in Ref. [80] that the additivity principle [81],
which applies classically with some degree of generality,
also holds for some statistics encoded into the mean system
state of diffusive spin chains. How do we extend this
principle to keep track of the quantum coherences and their
statistical fluctuations? How do we take the continuum
limit of those models to provide a quantization of the MFT?
We plan to report on these questions in the near future [82].
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