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Hebbian learning of excitatory synapses plays a central role in storing activity patterns in associative
memory models. Interstimulus Hebbian learning associates multiple items by converting temporal
correlation to spatial correlation between attractors. Growing evidence suggests the importance of
inhibitory plasticity in memory processing, but the consequence of such regulation in associative memory
has not been understood. Noting that Hebbian learning of inhibitory synapses yields an anti-Hebbian effect,
we show that the combination of Hebbian and anti-Hebbian learning can significantly increase the span of
temporal association between correlated attractors as well as the sensitivity of these states to external input.
Furthermore, these effects are regulated by changing the ratio of local and global recurrent inhibition after
learning weights for excitation-inhibition balance. Our results suggest a nontrivial role of plasticity and
modulation of inhibitory circuits in associative memory.
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Animals can recall memory from incomplete stimulus
presentation; in other cases, the presentation of one item
leads to the memory recall of a paired item. Such function is
called associative memory. Hebb postulated that synchro-
nous activation strengthens connections between neurons
in the brain, and these strongly connected neuron ensem-
bles (cell assemblies) are the basis of associative memory
[1]. In the brain, this “Hebbian learning” of cell assemblies
likely occurs through spike-timing-dependent plasticity
(STDP) [2,3]. An attractor network model with Hebbian
learning can recall activity patterns from incomplete
external cues [4]. Today, Hebb’s postulate is a widely
accepted paradigm for memory processing in the brain.
A number of experiments suggest that association

between items are represented by correlations between
activity patterns in the brain [5–7]. One important finding
was made in the investigation of prolonged activity patterns
in the temporal cortex of monkeys performing a visual
working memory task [8,9]. After uncorrelated visual
stimuli were consecutively presented during training, those
stimuli evoked mutually correlated activity patterns in the
test phase although the presentation order was random.
Griniasty et al. proposed a model that bridges Hebbian
learning and this finding [10] by adding cross-stimulus
terms to the local Hebbian connection matrix of the
conventional associative memory model [4]. The extended

model converts the sequence of uncorrelated stimulus
patterns into correlations between attractors, which are
significantly correlated up to a separation of five in the
sequence. Notably, this span of temporal association is
robust against variations in model parameters and is
consistent with experimental observations [10–12].
While Hebbian learning is sufficient for supporting the

correlated attractors, the role of inhibitory modulation for
associative memory remains unclear. Actually, researchers
are aware of the possible importance of inhibitory engrams in
memory processing [7,13]. Experiments also have revealed
that neuromodulators change the activity of cortical inhibi-
tory neurons in various ways [14–20]. Herewe show that the
plasticity and modulation of inhibitory circuits induce
previously unknown advantages in associative memory.
Let us assume a network of N neurons. Below, Si ¼ 1, 0

denotes activity of neuron i. Update of neural activity
follows

Siðtþ δtÞ ¼ Θ
�XN

j¼1

JijSjðtÞ þ θi

�
; ð1Þ

where Jij represents synaptic weights, θi is external inputs,
and ΘðxÞ is Heaviside step function. We assume that
neural activities are asynchronously (sequentially) updated,
that is, only one neuron is chosen and updated at every
time step. The network stores P random binary memory
patterns ξμi ð1≤ i≤N;1≤μ≤PÞ that are biased as E½ξμi � ¼
pð0 < p < 1Þ [21,22]. We define synaptic weights as

Jij ¼
1

N

XP
μ¼1

ðcξ̂μi ξ̂μj þ ξ̂μþ1
i ξ̂μj þ ξ̂μi ξ̂

μþ1
j Þ; ð2Þ
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where ξ̂μi ¼ ξμi − p and ξPþ1
i ¼ ξ1i . The parameter c can be

either positive or negative. When c is positive, this model is
equivalent to that of Griniasty et al. [10]. On the other hand,
negative c implies anti-Hebbian learning, which has not
been extensively studied in associative memory.
We can biologically interpret this connectivity when we

consider the weight [Eq. (2)] with ξ̃μi ¼ ξμi − P−1PP
α¼1 ξ

α
i

instead of ξ̂μi ¼ ξμi − p. Here, p is substituted by
P−1PP

α¼1 ξ
α
i which converges to p in the limit of

P → ∞. Even when P is finite, the model behavior is
similar to the original one (see Supplemental Material
[23]). In the case of ξ̃μi , we can decompose the synaptic
weight in our model into excitation and inhibition as

Jij ¼ JEij − JIij; ð3Þ
where

JEij ¼
1

N

XP
μ¼1

ð2ξμi ξμj þ ξμþ1
i ξμj þ ξμi ξ

μþ1
j Þ ð4Þ

JIij ¼ð2 − cÞ 1
N

XP
μ¼1

ξμi ξ
μ
j þ ð2þ cÞ 1

NP

XP
μ¼1

ξμi
XP
μ¼1

ξμj : ð5Þ

We note that JEij ≥ 0 and JIij ≥ 0 in the parameter region
−2 ≤ c ≤ 2.
We briefly state the biological relevance of the con-

nection matrices. First, the excitatory weights involve terms
symmetric with respect to ξμ and ξμþ1. In the cortex,
consecutively presented stimuli can be associated with one
another by certain mechanisms, as mentioned previously
[9,24]. On the millisecond range timescale, these terms
may emerge through a symmetric spike-timing-dependent
plasticity with a broad time window. Such a STDP rule has
been recently revealed in the hippocampal area CA3 [3].
Second, the inhibitory weights consist of two terms: the
first term represents pattern-specific local inhibition and the
second term is global inhibition proportional to the total
activity of stored patterns. When c varies between -2 and 2,
the balance of the two inhibition terms changes. Later, we
will explore how this type of inhibitory modulation affects
the associative memory performance of this model.
We analyze the attractors of this model by a similar

procedure to the previous one [10]. For consistency with
previous works, we use ξ̂μi ¼ ξμi − p in the analyses. We
define a pattern overlap, which represents the degree of
coincidence between the instantaneous activity and the μth
memory pattern, as

mμ ¼ 1

NB

XN
i¼1

ξ̂μi Si; ð6Þ

where B ¼ pð1 − pÞ. Furthermore, we specifically con-
sider the external inputs corresponding to a superposition of

memory patterns (θi ¼
P

μb
μξ̂μi ). Then, in the limit of

N → ∞, we can obtain the following mean-field time-
evolution equations of overlaps from Eq. (1):

_mμ ¼−mμ

þ 1

B⟪ξ̂μΘ
�XP

α¼1

ξ̂α½Bðcmαþmαþ1þmα−1Þþbα�
�
⟫;
ð7Þ

where ⟪·⟫ denotes averaging over possible configura-
tions of ξμ [25]. See the Supplemental Material for
derivation [23].
We numerically calculate the overlaps at a fixed point

( _mμ ¼ 0). The initial condition is mμ ¼ 1 for μ ¼ μinit and
mμ ¼ 0 otherwise. When the number of patterns is small,
we can exactly evaluate the quantities over all possible
combinations of fξμg. However, when we increase the
number of patterns, the number of possible configurations
of ξμ (i.e., sublattices) rapidly diverges and becomes
intractable. To overcome this difficulty, we perform the
Monte Carlo approximation of the mean-field equation by
sampling a finite but large enough number of fξμg
(typically, 106 samples). Furthermore, CðνÞ, correlations
between two attractors centered on the patterns μinit and
μinit þ ν, were also calculated for vanishing external inputs
(bμ ¼ 0) (see Supplementary Material [23] for the pro-
cedure). We share PYTHON codes for these calculations
in Ref. [26].
An unexpected finding is that negative values of c

significantly expand the span of interstimulus association
among correlated attractors. Figures 1(a) and 1(b) show
solutions for p ¼ 0.5 and P ¼ 21 obtained without external
inputs and the Monte Carlo approximation. When c is
positive (c ¼ 1.5), our model reproduces the result shown
by Griniasty et al. [10] in which the neighboring attractors
are significantly correlated up to the distance of five. In
contrast, when c is negative (c ¼ −1.5), the correlation
distance easily extends beyond 10. To see how the
correlation behaves at longer distances, we obtained
solutions for P ¼ 71 by using the Monte Carlo approxi-
mation [Figs. 1(c) and 1(d)]. The results show that the
correlation between attractors extends up to the distance of
20, which is four times longer than that for c ¼ 1.5.
We quantitatively study how the value of c changes

attractors in our model by calculating approximate sol-
utions in the range−3 ≤ c ≤ 3 for p ¼ 0.5 and P ¼ 71. We
calculated two measures: the maximum overlap that indi-
cates successful memory retrieval, and the span of corre-
lation Nc defined as

Nc ¼ minfνjCðνÞ < 10−2g − 1: ð8Þ

If only the nearest neighbor attractors have correlations
greater than 10−2, Nc is unity. The maximum overlap takes
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non-zero values only for c > −2 [Fig. 2(a)]. The value of
Nc is robustly around five for 0 < c < 2 [Fig. 2(b)] and
becomes 0 for c > 2 (that is, no correlated attractors exist in
this range). Thus, for c > 0 the threshold value 10−2

reproduces the results obtained by Griniasty et al.
(Nc ¼ 5) [10]. By contrast, as c is decreased from 0 to
−2, Nc gradually increases even beyond 20 [Fig. 2(b)].
We can observe a similar expansion of correlation for
biased patterns (p ¼ 0.1) [Figs. 2(c) and 2(d)]. In sum, the
extended span of correlation is generally found in the range
−2 < c < 0 regardless of the bias of memory patterns.

To further explore the functional implications of this
model, we investigated how the attractor states are modu-
lated by external inputs at various values of c. We applied
an external input with the amplitude bμinput ¼ 0.1 to the
memory pattern μinput (μinput ¼ μinit þ 20) in the attractor
state centered at the pattern μinit [see Fig. 1(a)]. Figure 3(a)
shows the resultant attractor states. For c ¼ 1.5, the
input does not greatly affect the initial attractor state,
creating a tiny additional peak representing the input
pattern μinput. In contrast, the attractor state completely
shifts towards the input pattern for c ¼ −1.5, indicating
that negative c increases the sensitivity of the network to
external input. We quantitatively clarified this effect
by calculating the threshold for the shifts, namely, the
minimum value of bμinput to shift the gravity center of
the overlap distribution μcenter towards the input pattern

(a) (c)

(d)(b)

FIG. 2. Parameter dependence of the maximum overlaps (a)
and Nc (b) for unbiased stimulus patterns (P ¼ 71, p ¼ 0.5).
Black lines and gray areas show the mean and standard deviation
over five different samples, respectively. The gray dashed line in
(b) indicates Nc ¼ 5 for comparison with the previous result [10].
(c), (d) Maximum overlaps and Nc for biased patterns
(P ¼ 71, p ¼ 0.1).

(a)

(d)

(c)

(b)

FIG. 1. Extended interstimulus association in anti-Hebbian
learning. Overlaps between a reference attractor (μinit ¼ 11)
and memory patterns (a) and correlations between attractors
(b) were calculated without the Monte Carlo approximation.
Parameters are P ¼ 21, p ¼ 0.5. (c), (d) Overlaps and correla-
tions were calculated with the Monte Carlo approximation for
μinit ¼ 36. Parameters are P ¼ 71, p ¼ 0.5.

(a)

(b)

FIG. 3. The parameter dependence of sensitivity to external
inputs. (a) Overlaps between a reference attractor (μinit ¼ 36,
μinput ¼ 56) and memory patterns. (b) The relationship between
the value of c and the threshold input strength for the attractor
shift. The results are shown only for bμinput ≤ 0.3. When the
attractor did not shift in bμinput ≤ 0.3, the threshold was plotted as
bμinput ¼ 0.3. We used p ¼ 0.5 for unbiased patterns, and p ¼ 0.1
for biased patterns, and the number of patterns is P ¼ 71. Black
lines and gray areas show the mean and standard deviation,
respectively, over five different samples.
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(jμcenter−μinitj> jμcenter−μinputj). In both unbiased (p¼0.5)
and biased (p ¼ 0.1) patterns, this threshold is generally
lower for c < 0 than for c > 0 for all choices of the initial
distance to input (μinput − μinit ¼ 5, 10, 20) [Fig. 3(b)].
Thus, changing the balance of local and global inhibition
(towards local inhibition) increases the sensitivity of
correlated memory states to external events and hence
lowers the threshold of the shift of the attractor.
We can qualitatively study these properties by means of

the following energy function:

E ¼ −
X
i;j

JijSiSj −
X
i

θiSi: ð9Þ

Sequential update of the neural activity by Eq. (1) mono-
tonically decreases this energy [4]. Defining θi ¼

P
μb

μξ̂μi ,
we can rewrite the energy function in terms of pattern
overlaps as

E∝−c
XP
μ¼1

ðmμÞ2−2
XP
μ¼1

mμmμþ1−N
XP
μ¼1

bμmμ

¼−
XP
μ¼1

ðc0ðmμÞ2þNbμmμÞþ
XP
μ¼1

ðmμ−mμþ1Þ2; ð10Þ

where c0 ¼ cþ 2. Note that 0 < c0 < 4 if −2 < c < 2.
When bμ ¼ 0 and c0 < 0, this function is trivially mini-
mized when all overlaps vanish. By contrast, if c0 > 0,
energy minimization requires the maximization of ðmμÞ2
under the penalty of ðmμ −mμþ1Þ2. Without the penalty, the
model is equivalent to the standard Hopfield model in
which a single nonvanishing overlap minimizes the energy.
However, the penalty term creates a broad distribution of
nonvanishing overlaps for small values of c0. As c0
increases, the relative contribution of the penalty term
becomes smaller, narrowing the distribution. Decreases in
c0 also make the relative impact of bμ greater, increasing
input sensitivity.
Finally, we explored the role of inhibitory plasticity

balancing inhibition with excitatory engrams. Excitatory
synaptic weights [Eq. (4)] can arise from Hebbian learning,
but whether experimentally suggested inhibitory learning
rules [7,13] may create inhibitory weights [Eq. (5)]
remains unclear. Here, we considered a network of N ¼
2000 neurons storing P ¼ 50 sparse memory patterns
(p ¼ 0.05) in excitatory synapses [Fig. 4(a)]. To clarify
the distinct roles of inhibition, we divided the inhibitory
network into local and global inhibition. The inhibition
ratio a between the two inhibitory inputs was modulated in
the range 0 < a < 1, where a ¼ 1 and a ¼ 0 refer to fully
local and fully global inhibition, respectively. This param-
eter plays a similar role to c in Eq. (5) and c0 in Eq. (10).
Inhibitory synaptic weights were initially zero, and the
plasticity rule that imposes E-I balance on postsynaptic

neurons was used as in [13]. See Supplemental Material
SM [23] for the detail of the model.
The value of a was initially kept constant (a ¼ 0.9) to

relax the weights of local and global inhibition onto the
equilibrium values, which corresponds to the condition
c0 ≈ 0 [Fig. 4(b)]. Then, we terminated the learning process
and tested the responses of the network. In this test, we
periodically modulated the value of a [Fig. 4(c)] and

(a)

(c)

(d)

(e) (f)

(b)

FIG. 4. Inhibitory regulations of correlated attractors. (a) A
network model of excitatory neurons (orange) is regulated by
local (L) and global (G) inhibitory neurons (blue). (b) The
relaxation of synaptic weights of local and global inhibition
during the initial adaptation period. We plotted the maximum
weight changes every 5 ms fmaxi;μ½wL

iμðtþ 5 msÞ − wL
iμðtÞ�;

maxi½wG
i ðtþ 5 msÞ − wG

i ðtÞ�g, where the changes were normal-
ized such that their peak is 1. The inhibition ratio was a ¼ 0.9.
(c) The inhibition ratio was sinusoidally modulated during the test
period (time > 100 s). (d) Time evolution of overlaps between
memory patterns and simulated neural activities is shown during
the test period. Overlaps exceeding 1 or below 0 were truncated.
We note that the overlap distributions are broadened and occa-
sionally drifted at the peak times of the inhibition ratio (local-
inhibition-dominant state). (e) Means (lines) and standard
deviation (shaded areas) of overlap distributions were calculated
for the epochs of low (a < 0.2: green) and high (a > 0.8: red)
inhibition ratios. Memory patterns were renumbered such that
memory pattern 0 takes the maximum value. (f) The same as (e),
but after randomization of inhibitory synaptic weights.
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intermittently stimulated neurons encoding a memory
pattern, which was randomly selected for every stimulus.
Driven by the external inputs, the center of correlated
attractors drifted only at the peaks of a [Fig. 4(d)]. As
shown in Fig. 4(e), the width of overlap distributions was
also maximally broadened at the peaks. These changes of
the width of overlaps and input sensitivity are consistent
with the results of our mean-field analysis. Random
changes in inhibitory synaptic weights within the �50%
of the learned values collapsed the attractor states
[Fig. 4(f)], suggesting that the learned inhibitory weights
are necessary for stabilizing the attractors. These results
demonstrate the roles of inhibitory plasticity inducing E-I
balance and the global-versus-local inhibition ratio for
regulating attractor states.
We may speculate the biological mechanisms and func-

tional implications of the regulations of local versus global
inhibitory circuits. Parvalbumin- (PVþ) and somatostatin-
expressing (SOMþ) interneurons are considered to regulate
local and global inhibition, respectively [27,28]. Activity of
SOMþ interneurons are inhibited [14,15] and excitability
of PVþ interneurons is facilitated [16,17] by acetylcho-
line, respectively, implying that the cholinergic modula-
tions of these neurons are candidate mechanisms to regulate
the balance between the two inhibitory effects. There are,
however, controversial experimental results [18–20], and
further experimental clarification is necessary for the
cholinergic mechanisms.
In our model, the extended span of simultaneously

recalled memory patterns is accompanied by their increased
sensitivity to external input, which can enhance the
influence of context (sensory) information on the retrieval
of extended (hence, uncertain) memory states. Related to
this, acetylcholine level was proposed to reflect the
uncertainty of top-down information in sensory processing
[29]. Furthermore, the span of correlated attractors may
determine the timescale of episodic events during encoding
and retrieval. Actually, several cortical regions including
the hippocampus are engaged in segregating and concat-
enating (i.e., chunking) episodic events on multiple time-
scales [30]. The roles of modifiable correlated attractors are
open for future experimental and computational studies.
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