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We predict that long-lived excitons with very large binding energies can also exist in a single or few
layers of monochalcogenides such as GaSe. Our theoretical study shows that excitons confined by a radial
local strain field are unable to recombine despite electrons and holes coexisting in space. The localized
single-particle states are calculated in the envelope function approximation based on a three-band k · p
Hamiltonian obtained from density-functional-theory calculations. The binding energy and the decay rate
of the exciton ground state are computed after including correlations in the basis of electron-hole pairs. The
interplay between the localized strain and the caldera-type valence band characteristic of few-layered
monochalcogenides creates localized electron and hole states with very different quantum numbers which
hinders the recombination even for singlet excitons.
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Introduction.—Long-lived excitons have been long
sought after both for creating quantum Bose gases in
semiconducting materials [1,2] and for the development
of novel excitonic devices. To date, these have been
extensively studied in III-V and II-VI semiconductor hetero-
structures where the range of existence is limited to low
temperatures. Very recently, they have also been observed at
room temperature in van der Waals transition-metal dichal-
cogenide (TMDC) two-dimensional (2D) heterostructures
[3,4]. In both cases, the long-lived nature stems from the fact
that the electron and the hole are spatially separated, thereof
the name indirect excitons.
The spatial separation between electron and hole

composing an indirect or interlayer exciton in TMDC
2D heterostructures allows for long recombination life-
times, but it is also a limitation. Leaving aside the
technical difficulties of creating heterostructures in a
controlled manner, the required spatial separation limits,
in turn, the binding energy. Larger interlayer or electron-
hole distances amount to longer recombination times but
weaker binding energies. Here we show that both require-
ments, impossible to meet in TMDC heterostructures,
can be found in strained few-layered monochalcogenides
such as GaSe.
It is well known that the application of external strain on a

semiconductor leads to a modification of the band gap.
This is particularly important in 2D crystals where large
strains can be applied before the crystal ruptures [5,6]. The
modulation of the band gap due to strain has been quantified

for MoS2 [7], phosphorene [8], and GaSe [9], to name a few.
In the multilayer form of the latter and in other 2D TMDC,
a causality relation between localized strain deformations
and single-photon emission has been demonstrated [10–14],
although the ultimate reason for this relation remains unclear.
The proven strong band-gap modulation with strain, the

possibility of single-photon emission, along with an anoma-
lous shape of the GaSe valence band motivates the present
study. Below approximately seven layers, the valence band
turns from a common inverted parabola to a caldera-type
shape or ring-type shape [9,15]. Free excitons in GaSe
monolayer have already been studied with ab initio methods
[16], showing a variety of behaviors due to the peculiar
valence band. Here we are interested in localized radial
deformations as those invoked to explain single-photon
emission in multilayer GaSe [10,11]. Here we show that
the combined peculiarity of the valence band along with
local strain quenches the photoluminescence by making the
localized excitons extremely long-lived, as shown below.
The effective Hamiltonian.—We start by constructing an

accurate low-energy Hamiltonian for a monolayer of GaSe
using k · p theory. First, we find the density-functional-
theory (DFT) band structure of monolayer GaSe as shown
in Fig. 1 (blue solid lines). We have used the CRYSTAL code
implementation of the hybrid functional HSE06 [17] to
obtain a good approximation of the actual quasiparticle
gap. Our DFT calculation will serve a twofold purpose: to
check the validity of our effective model Hamiltonian and
to obtain the necessary information (Bloch states and band
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edges at the Γ point) to compute the momentum matrix
elements for a parameter-free description. The unperturbed

Hamiltonian is Hð0Þ
nm ¼ Enδnm, where the n, m indices

represent Bloch states at the Γ point, which we will use
as our basis, and En is the energy of these Bloch states.
Following the discussion in Ref. [18], we pursue a three-
band model to properly account for the caldera form of the
valence band (see Fig. 1).
In k · p theory, the first-order correction is linearly

dependent in k with the form Hð1Þ
nm ¼ ðℏ=m0Þ

P
α kαp

α
nm,

where α (and later β) denotes Cartesian coordinates, and
pα
nm is the α component of the momentum matrix element

between Γ-point Bloch states. Based on group theory
considerations, we can anticipate the momentum matrix
elements that are nonzero and, thereby, the general form of
the Hamiltonian. We will follow the notation in Ref. [18]
for the D3h point group to which monolayer GaSe belongs.
The valence and the two first conduction bands v0, c0, and
c1 belong to the Γþ

1 , Γ−
2 , and Γ

þ
1 irreducible representations

(IRs) respectively, and will form our working subspace A
from now on. In order for the momentum matrix elements
to be nonzero, the decomposition of the direct product of
the eigenstates IRs and the IR of the momentum operators,
which in the D3h group transform as Γþ

3 (px, py) and Γ−
2

(pz), must contain the fully symmetrical representation
Γþ
1 . One can see that only hΓþ

3 jpx;yjΓþ
1 i, hΓþ

3 jpx;yjΓþ
2 i,

hΓ−
3 jpx;yjΓ−

1 i, hΓ−
3 jpx;yjΓ−

2 i, hΓþ
3 jpx;yjΓþ

3 i, hΓ−
3 jpx;yjΓ−

3 i,
and their complex conjugates are nonzero. Therefore, the
resulting Hamiltonian will not contain terms linear in k.
The absence of linear terms in the Hamiltonian forces us to
consider the coupling of the subspace A with the rest of the
bands, which now becomes the dominant contribution. This
is typically done through the Löwdin partitioning technique
[19]. Including the coupling with all bands and evaluating

numerically the momentum matrix elements, the effective
Hamiltonian becomes

HeffðkÞ ¼

0

B
@

AðkÞ 0 BðkÞ
0 CðkÞ 0

B�ðkÞ 0 DðkÞ

1

C
A; ð1Þ

with

AðkÞ ¼ −1.4þ 19.6k2x þ 20.0k2y;

BðkÞ ¼ 55.5k2x þ 63.4k2y;

CðkÞ ¼ 1.4þ 67.7k2x þ 164.8k2y;

DðkÞ ¼ 2.5þ 74.3k2x þ 148.8k2y ð2Þ

in units of eV (and atomic units for wave vectors).
As discussed earlier, v0 and c1 bands transform as Γþ

1 ,
which only couples with Γþ

3 states. On the other hand, Γþ
3

does not couple with Γ−
2 , the IR of c0. As a result, one could

have expected v0 and c1 to remain decoupled from c0 when
evaluating the second-order correction in the partitioning
method, as can actually be seen in Eq. (1). The three bands
resulting from the effective Hamiltonian are shown in Fig. 1
(red dashed lines). The agreement with the original DFT
bands is very good near the Γ point included the caldera
shape of the valence band. Since we have used all the bands
in the evaluation of the second-order perturbation terms, no
further improvement can be envisioned to second order
within our three-band model.
Local strain model.—Assuming that strain changes occur

on length scales much larger than the lattice spacing, we can
work in the envelope function framework where one writes
the eigenfunctions in the formψγ ¼

P
n F

ðγÞ
n ðrÞun0ðrÞ. Here,

un0 are the periodic Bloch functions at k ¼ 0, andFðγÞ
n are 2D

envelope functions [20] calculated from a set of coupled
differential equations:

X

m

HSQD
nm ðr;−i∇rÞFðγÞ

m ðrÞ ¼ εγF
ðγÞ
n ðrÞ: ð3Þ

HSQD is the Hamiltonian of the strain-induced quantum dot
(SQD) created by the local perturbation. We assume the
strain to be locally biaxial, which can bemodeled by adding a
local “potential” to the k-independent diagonal terms inHeff ,

HSQD
nn ¼ En þ ΔnðrÞ þ

X

α

Mα
n∇2

α; ð4Þ
while keeping unchanged the k-dependent diagonal (here
generically represented by M) and nondiagonal terms
Bð�ÞðkÞ. This approximation captures the main effect, which
is the confinement of electrons and holes, while maintaining
the complexity of the implementation to a minimum. It
neglects changes in the effective mass or band curvature and
the possible appearance of newHamiltonian terms due to the
breaking of the C3h symmetry, but it has been shown to be

FIG. 1. DFT (solid blue lines) and effective bands (red dashed
lines) of a GaSe monolayer along the K-Γ-M path near the Γ
point. IRs of the zone center states are shown according to
Ref. [18]. The inset shows the evolution of the energies at the Γ
point for several biaxial strain values calculated using DFT.
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quantitatively accurate in a somewhat similar context [21].
In practice, we consider a tensile Gaussian strain field of
the formS0 exp ð−r2=σ2sÞwith amaximum strain at its center
of 5%. The local lattice deformation is mapped onto ΔnðrÞ
thanks to a series of DFT calculations performedwith biaxial
tensile strain. In the inset of Fig. 1, we show the Γ-point
energies as obtained for several values of the tensile strain.
We have also implicitly assumed, as seen in the inset of
Fig. 1, that the chemical potential (set at zero) stays in the
midgap at all points in space.Adetailed calculation is beyond
the scope of this work, but this choice complies with local
charge neutrality and overall thermodynamic equilibrium at
low temperatures.
Single-particle results.—In order to solve Eq. (3), we

further expand the envelope functions as

FðγÞ
n ¼

X

nxny

cðnγÞnxnyϕnxny ; ð5Þ

where ϕnxny are the Cartesian 2D harmonic oscillator (HO)
basis functions. The kinetic part of the matrix elements in
the HO basis can be easily evaluated using the ladder
operators, while the strain contribution coming from the
term ΔnðrÞ is evaluated numerically. As an example, we
show in Fig. 2 the density of states of electrons and holes
obtained from the numerical diagonalization of Eq. (3) for
two representative cases. In both cases, we find bound
states within the band gap of the unstrained monolayer.
These states distribute in a more dense spectrum in the
valence band than in the conduction band, a consequence of
the caldera shape of the former, which also gives rise to the
expected van Hove singularity [16]. The number of bound
states in each band increases with σs and S0, as could
intuitively be expected. The transition from bound to
delocalized states (shaded regions in Fig. 2) occurs near

the band edges of the unstrained conduction and valence
bands. A minimum of ∼30 and ∼100 bound states have
been found in the valence and conduction band, respec-
tively, in all the studied cases, which is sufficient for our
purposes.
A plot of the envelope functions reveals the very

different nature of valence and conduction bound states.
In Figs. 3(a) and 3(c), we show a chart of the HO basis
coefficients (absolute value) of the v0 and c1 envelope
functions corresponding to the highest-energy hole state
and in Fig. 3(e) the c1 envelope function of the lowest-
energy electron state. Both hole envelope functions show a
very similar behavior, although v0 gives the main contri-
bution to the state. The other envelope function is zero due
to the absence of coupling in Eq. (1). The electron state has
mainly ðnx ¼ 0; ny ¼ 0Þ character (as could be anticipated
for a parabolic band), but the hole state shows a dramatic
shift to high ny quantum numbers. This behavior can be
traced back to the caldera ring away from the Γ point in the
unstrained band structure. We also show the 20th electron
and hole states (moving away from the band edges) in
Figs. 3(b), 3(d), and 3(f). The hole state spreads now also to

(a) (b)

(c) (d)

FIG. 2. Density of states of the valence band calculated from
the numerical diagonalization of a SQD with σs ¼ 10 nm, S0 ¼
2% (a) and σs ¼ 10 nm, S0 ¼ 5% (c). Same for the conduction
band [(b) and (d)]. We have used 3600 HO basis functions
for every envelope function in the two calculations with a HO
frequency optimal to match the Gaussian curvature of the
strain field. Extended states approximately belong in the shaded
regions.

FIG. 3. Charts of the HO expansion (absolute value of the
coefficients) for the envelope functions. v0 envelope function for
(a) the first and (b) the 20th valence state. (c) and (d) panels show
the c1 envelope function for the same states (notice the much
smaller contribution). c0 envelope function for (e) the first and
(f) the 20th conduction state. The insets show the actual shape of
the associated wave function in real space.
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higher values of nx, while the electron state still presents the
largest weight at low HO quantum numbers.
Excitons.—Interactions are now added to the single-

particle Hamiltonian expanded by electron and hole bound
states:

H ¼ HSQD þHe;h; ð6Þ

with

HSQD ¼
X

i

ϵic
†
i ci þ

X

j

ϵjd
†
jdj;

He;h ¼ −
X

i1 ;j1 ;i2 ;j2
σ;σ0

c†i1σci2σd
†
j2ð−σ0Þdj1ð−σ0ÞVi1;j1;j2;i2 : ð7Þ

In the electron-hole interaction terms, we omit the exchange
part as, in the leading order, their matrix elements would give
no energy corrections [22,23]. This is due to the specific form
of our Hamiltonian in Eq. (1), which results in conduction
and valence states not sharing envelope functions.
No other interaction terms are needed since we only

consider single electron-hole pairs. At this level, excitonic
states can be constructed as

jXi ¼
X

i;j;σ

Aijc
†
iσd

†
jð−σÞj0i; ð8Þ

where j0i denotes the vacuum state with no electrons and
holes.
The excitonic states are then calculated by projecting

Eq. (7) onto the electron-hole pair basis and converged in
the number of these pairs (we restrict ourselves to 200
electron-hole pairs which is enough for our purposes).
For the interaction kernel, we have considered the bare

Coulomb interaction and the Keldysh interaction model,
more appropriate for 2D systems [24]. Both types of
interactions give qualitatively similar results with unim-
portant differences in the actual exciton binding energies
which are not relevant for our discussion here. Since the
interactions preserve all the symmetries, excitons can be
classified according to how the transform under in-plane
reflections in both electron and hole coordinates. In the
following, we focus on the excitons whose electron and
hole wave functions transform similarly, as these are, in
principle, the active ones in photoluminescence.
In Fig. 4(a), we show the quasiparticle gap and binding

energy of the optically active (symmetry-allowed) lowest-
energy excitonic state Eð0Þ

X for different parameters char-
acterizing our SQD. Depending on the parameters and
interaction details, this can be the ground state, but this is
unimportant for our main conclusion (see below). In
particular, we have used the Keldysh potential [25] in an
environment of vacuum. The binding energies decrease
with σs since the single-particle states become more
extended in space. On the other hand, the binding energy

increases with the strength of the strain as they become
more localized.
Quenching of the exciton recombination.—The most

relevant result is found in the photoluminescence. The
recombination rate to the ground state mediated by the
emission of a photon can be computed using Fermi’s
golden rule (ignoring proportionality constants) [23,26,27]

I ∝
1

Eð0Þ
X

X

qλ

�
�
�
�

X

i;j

Aijp
ðqλÞ
ji

�
�
�
�

2

δðEð0Þ
X − ℏωqÞ: ð9Þ

Here, pðqλÞ
ji is the scalar product of the momentum matrix

element and the photon polarization vector ϵqλ. The squared
quantity is known as the oscillator strength. Thus, the
recombination is encoded in those electron-hole pairs
which have a relevant contribution to the exciton wave
function. The momentum matrix element in Eq. (9) reads

pðqλÞ
ji ¼

X

m;n∈A
humjϵqλ · pjunihFðjÞ

m jFðiÞ
n i: ð10Þ

Additional terms would appear if one considers the first-

order correction ψ ð1Þ
γ ¼ P

m∉AF̃
ðγÞ
m um0 to the bound states,

with the F̃m being envelope functions obtained in terms of
the zero-order ones. As explained below, these corrections
can be safely neglected.
For in-plane polarization, we have already seen that the

momentum matrix element between states in A vanish.
If the polarization vector has a z component, then the only
coupling allowed is between v0 and c0 [16]. Thus, in the
leading order

(a)

(b)

FIG. 4. (a) Band gap and binding energy of the ground state
exciton for several values of the strain strength and extension. The
Keldysh interaction with a screening length r0 ¼ 10 Å has been
used. (b) Decay rate of the ground state exciton as expressed in
Eq. (12) for the cases in (a).
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pðqλÞ
ji ≈ huv0 jpz cos θzjuc0ihFðjÞ

v0 jFðiÞ
c0 i; ð11Þ

being cos θz the z-direction cosine of the polarization
vector. For a single polarization, Eq. (9) reduces to

I ∝
jPijhFðjÞ

v0 jFðiÞ
c0 ij2

Eð0Þ
X

δðEð0Þ
X − ℏωqÞ: ð12Þ

Since we are considering symmetry-allowed active
excitons, the scalar product can, in principle, be nonzero.
Common semiconductors present parabolic bands for both
electrons and holes and an effective mass in each band can
be defined. When confined, their envelope wave functions
thus present a very similar quantum character (similar
quantum numbers when expressed in some basis) and a
large overlap. Here, electrons have indeed an effective
mass, but this quantity is ill-defined for the valence band.
While the relevant electron wave functions are smooth and
present no or few nodes (see Fig. 3), the relevant valence
wave functions present many nodes since, ultimately, they
originate from different Bloch states away from the center
of the Brillouin zone. Therefore, we can conjecture that
even the dipole-allowed transitions will vanish due to the
nearly orthogonal nature of the hole and electron envelope
functions.
In Fig. 4(b) we show the rate of Eq. (12) in logarithmic

scale. We obtain, as expected, very low values for all the
cases studied (in contrast to values of the order of unity in
the case of the most common semiconductors). Higher-
order corrections to the envelope functions ψ ð1Þ

γ are not
expected to give a relevant contribution to Eq. (10). These
are obtained by differentiation of the zero-order envelope
functions [19], which translates in a spreading of the order
of unity of the quantum numbers (see, e.g., Fig. 3), thus
maintaining its quasiorthogonal character. Finally, note that
this result does not depend on the singlet or triplet nature of
the exciton or the magnitude of the dipolar matrix elements
because it is encoded in the envelope part of the wave
functions. We thus conclude that photoemission is generi-
cally quenched.
Conclusions and perspectives.—We have shown that

excitons localized by a radial strain perturbation in GaSe
monolayer present extremely long recombination times.
This is a direct consequence of the very different quantum
nature of the confined wave function of electrons and holes.
Although we have focused on a specific 2D monochalco-
genide, everything seems to indicate that similar results
would be obtained in other monochalcogenides such as
GaS and InSe [15] and even in different families of
materials presenting a caldera-shaped valence or conduc-
tion band. The study of many-body effects beyond single-
exciton physics also presents intriguing possibilities in
these materials which will be explored in the future.
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