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The main origin of the chiral symmetry breaking and, thus, for the magnetochiral effects in magnetic
materials is associated with an antisymmetric exchange interaction, the intrinsic Dzyaloshinskii-Moriya
interaction (DMI). Recently, numerous inspiring theoretical works predict that the bending of a thin film to
a curved surface is often sufficient to induce similar chiral effects. However, these originate from the
exchange or magnetostatic interactions and can stabilize noncollinear magnetic structures or influence spin-
wave propagation. Here, we demonstrate that curvature-induced chiral effects are experimentally
observable rather than theoretical abstraction and are present even in conventional soft ferromagnetic
materials. We show that, by measuring the depinning field of domain walls in the simplest possible curve,
a flat parabolic stripe, the effective exchange-driven DMI interaction constant can be quantified.
Remarkably, its value can be as high as the interfacial DMI constant for thin films and can be tuned
by the parabola’s curvature.
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Broken magnetic symmetry is a key aspect in condensed
matter physics and, in particular, in magnetism. It can lead
to the appearance of chiral effects, such as the topological
Hall effect [1], or to the formation of chiral noncollinear
magnetic textures, as skyrmions [1–3] and chiral domain
walls (DWs) [4,5]. These chiral structures can be the key
components for realizing novel concepts for magnonics [6],
antiferromagnetic spintronics [7], spin-orbitronics [8,9],
and oxitronics [10,11]. So far, the main chiral symmetry
breaking effects considered as being the origin for the
presence of chiral noncollinear magnetic textures are the
exchange frustration [12] and the intrinsic Dzyaloshinskii-
Moriya interaction (DMI) [13,14]. The latter, an anti-
symmetric exchange interaction, can develop in certain
magnetic crystals in which the unit cell lacks inversion
symmetry, such as the gyrotropic magnetic crystals [13,14],
or appear typically in ultrathin films or bilayers due to the
inversion symmetry breaking on the film interface [15–17].
At present, tailoring of DMI is done by optimizing
materials, either doping a bulk single crystal [18,19] or
adjusting interface properties of thin films and multilayers
[20]. A viable alternative to the tuning of the intrinsic
properties of materials can be the break of local inversion
symmetry appearing in curvilinear structures of conven-
tional materials [21–23]. Magnetic switching processes in
curved nanostripes [24–26] and nanorings [27–29] are
studied experimentally primarily to address DW dynamics
for prospective memory [30–32] and logic [33–35] devices.
Because of considered geometries and dimensions of mag-
netic structures, these works do not address exchange-
driven chiral effects in curvilinear magnets. Therefore, by

now, these novel geometry-driven chiral interactions are
investigated only theoretically [36–38]. No experiment is
known yet to confirm this exciting theoretical prediction.
Here, we provide the very first experimental confirma-

tion of the existence of the curvature-induced chiral
interaction of exchange origin in a conventional soft
ferromagnetic material. We experimentally explore the
theoretical predictions, that the magnetization reversal of
flat parabolic stripes shows a two-step process. At the first
switching event, a DW pinned by the curvature-induced
exchange-driven DMI is expelled, leading to a magneti-
zation state homogeneous along the parabola’s long axis as
schematically shown in Fig. 1(a). Measuring the depinning
field enables one to quantify the effective exchange-driven
DMI constant. The magnitude of the effect can be tuned by
the parabola’s curvature and width.
Although the curvilinear exchange-driven chiral effects

are generic, they are difficult to find in experiments, because
they are shaded by other effects or interactions such as
the long-range magnetostatic interaction. Moreover, the
exchange interaction alone in a curved system will not lead
to curvature-induced chiral effects. A further requirement is
the existence of an anisotropy which reflects the shape of the
curvature. The parabolic stripe geometry is not only the
mathematically simplest possible curve with well-defined
geometrical properties [Fig. 1(b)] but the ideal object to study
the curvature-induced exchange-driven chiral effects. It has a
curvature gradient that forms a potential well for the pinning
of a possible chiral magnetic texture [39]. The anisotropy
reflecting the shape is present by default because of the
magnetostatic interaction as a shape anisotropy. Moreover,
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due to the flatness of the parabolas, themagnetostatic-driven
curvilinear effects can be neglected. These are the right
ingredients which push exchange-driven chiral effects to the
forefront and enable their experimental validation.
Parabolic stripes with 10-nm-thick Ni81Fe19 (permalloy,

Py) and various geometrical parameters (stripe length
L ¼ 2 μm, width W ¼ 75–135 nm, and vertex curvature
κ0 ¼ 0.005–0.07 nm−1) were patterned using electron-
beam lithography and ion beam etching [Fig. 1(c)]; see

Sec. S1 in Ref. [40]. The static magnetization states appear-
ing during hysteresis loops are visualized with x-ray mag-
netic circular dichroism photoelectron emission microscopy
(XMCD-PEEM) [Figs. 1(d)–1(f)]. Parallel, perpendicular,
and antiparallel alignment of the magnetization with respect
to the x-ray beam direction is encoded by a red-white-blue
color scheme. As shown in Figs. 1(d)–1(f), two switching
events separated by a plateau region can be distinguished
while reversing the external field (the blue crosses are the

(b) (c) (d) (e) (f )

(a)

(g) (h) (j)

FIG. 1. Hysteresis loops and states. (a) Schematic illustration of the four main magnetic states appearing during the field reversal:
saturation, domain wall (head-to-head or tail-to-tail), homogeneous along the parabola, and again saturation in the reversed field. The
blue arrows mark the external field direction, and the small black arrows indicate the magnetization direction. In color code, the
component of the magnetization perpendicular to the parabola’s long axis is shown. Reducing the field from positive saturation to zero, a
DW is forming at the apex of the parabolic stripe. In order to remove the DW pinned by the curvature-induced DMI at the apex, a certain
negative field −BDMI has to be applied. Further increasing the field in the negative direction at BS, a DW will nucleate at the end of the
parabola and move into the apex, thus reversing the magnetization. (b) Schematic picture of a parabolic stripe construction. Green
arrows correspond to the Cartesian frame of references, while red ones refer to a local curvilinear frame of references. (c) Scanning
electron microscopy image of a patterned stripe with L ¼ 2 μm length,W ¼ 135 nm width, and κ0 ¼ 0.015 nm−1 vertex curvature. The
main magnetic states imaged by XMCD-PEEM appearing during the field reversal are (d) tail-to-tail (TTT) DW, (e) homogeneous along
the parabola, and (f) head-to-head (HTH) DW. A comparison of experimentally and numerically obtained hysteresis loops for parabolic
stripes are shown for the following stipe widths: (g) W ¼ 135 nm and κ0 ¼ 0.015 nm−1, (h) W ¼ 75 nm and κ0 ¼ 0.05 nm−1, and
(j) W ¼ 125 nm and κ0 ¼ 0.01 nm−1. Blue crosses correspond to the experimentally observed magnetic contrast change via the
XMCD-PEEM imaging. Red lines correspond to results of the full-scale micromagnetic simulations.
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experimental data); see Sec. S2 in Ref. [40]. Note, in all
considered geometries, Figs. 1(g)–1(j) show the same two-
step switching.
To understand this two-step switching process, full-scale

finite element micromagnetic simulations are performed for
parabolic stripes with geometrical parameters taken from
the experiment; see Sec. S3 in Ref. [40]. The resulting
hysteresis loops are shown in Figs. 1(g)–1(j) as red solid
lines. The specific two-step switching process with three
easily identifiable plateaus is present for all considered
geometries. Each of the plateaus refers to stable magnetic
states: tail-to-tail and head-to-head domain walls and a
homogeneous magnetic state along the parabolic stripe
(middle plateau). Analyzing the simulations at the first
switching field BDMI, indeed the tail-to-tail DW is depinned
from the parabola apex and propagates along one of the
parabolic branches, leading to the appearance of the
homogeneous magnetic state. The second switching field
BS is related to the nucleation of a head-to-head DW from
the end of a parabolic branch and its propagation into the
apex area. Remarkably, the simulation results concerning
BDMI are in perfect agreement with the experimentally
measured ones, while the results for the second switching
field reveal a quantitative discrepancy. This already sug-
gests that the sample imperfections, due to the patterning,
do not influence the DW dynamics at the first switching but
make a significant influence on a DW nucleation process.
To define the fundamental influence of the exchange and

the magnetostatic interactions on switching processes,
additional micromagnetic simulations are performed using
a local magnetostatic model in which the magnetostatic
interaction is replaced by a biaxial shape anisotropy
composed of an easy plane and uniaxial terms [49];
see Secs. S3 and S4 in Ref. [40]. Corresponding hysteresis
loops for three investigated parabolic geometries are shown
in Figs. 1(g)–1(j) as green solid lines. While the resulting
hysteresis loops reveal the qualitatively same two-step
switching process, which was discussed above, for two
wide parabolic stripes (W ¼ 125 and 135 nm) the first
switching fields have a quantitative match with both
experimental and full-scale micromagnetic hysteresis
loops. The quantitative discrepancies in the second switch-
ing fields are present for all studied geometries. It is well
known from the literature that the BS field is magnetostatic
driven and has been extensively studied in the case of
rectilinear geometries [50,51]. The obtained discrepancy in
the first switching fields for several parabolic stripes
(W ¼ 75 nm, κ0 ¼ 0.055 nm−1) appears due to the local
widening of the apex area for parabolic stripes with big
curvatures; see Sec. S2 in Ref. [40]. This widening leads to
the local change of the shape anisotropy, which is not taken
into account in the biaxial model. The good agreement of
the depinning fields compared to those obtained from the
full-scale micromagnetic simulations in the unshaded
region ensures that the biaxial anisotropy model is a valid

approximation for such flat parabolic stripes. Moreover, it
demonstrates that the magnetostatic-driven curvilinear
effect can be neglected when describing the first switching
field.
To determine the influence of the apex curvature κ0 on

the DW pinning, additional full-scale simulations are
performed for parabolic stripes with a constant width but
varying curvature as shown in Fig. S4 in Ref. [40]. In
Fig. 2, the dependence of the DW depinning field BDMI as a
function of the curvature κ0 is summarized for stripes with
four different widths. The shaded areas represent parabolic
stripe geometries with local widening in the apex region.
The depinning field increases with the decrease of the
stripe width and increase of the parabolic curvature. The
BDMIðκ0Þ dependence reveals the presence of two linear
trends with an intermediate nonlinear transition region.
Such a change in the dependence trend indicates the
transition from the exchange-induced to the magnetostati-
cally-induced curvilinear effects in the DW depinning
processes. To demonstrate this, we simulate parabolic
nanostripes with different κ0 in the framework of the
biaxial model; see the green curves in Fig. 2. The resulting
BDMIðκ0Þ dependence reveals only one linear trend, which

FIG. 2. Dependance of the DW depinning field on the curva-
ture. Depinning fields as a function of the vertex curvature are
shown for parabolic stripes with the following widths: 25, 75,
125, and 135 nm.
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is almost the same as the first linear trend obtained from the
full-scale micromagnetic simulations. Thus, this assures
that the source of the geometrical pinning potential is
the curvature-induced exchange-driven DMI, which was
discussed earlier on DW depinning in curvilinear stripes
[24,26,52].
To obtain a deeper insight into the origin of the depinning

mechanism of the transversal DW, we conducted analytical
calculations using the biaxial anisotropy approximation of
the magnetostatic interaction for a one-dimensional system
[49]; see Sec. S5 in Ref. [40]. In parabolic stripes, the
curvature-induced DMI interaction is well localized at the
vicinity of the apex, and its vector is perpendicular to
the parabolic plane. The theoretical curvature dependence
of thedepinning fieldsBDMI are shown as black lines in Fig. 2.
The results are in perfect agreement with those obtained by
full-scale micromagnetic simulations for small curvatures.
The influence of the exchange-induced curvilinear effects
on the DW depinning field BDMI is demonstrated by artifi-
cially turning on and off the exchange-driven DMI and/or
anisotropy terms in the energy functional; see Supplemental
Material Sec. S5 [40].With the inducedDMI term set to zero,
the initial tail-to-tail DW switched to a homogeneous mag-
netic state along the stripe at a nearly zero negative field, in
large contrast to the experimental and full-scale simulation
results. However, the absence of the effective anisotropy term
has only a negligible effect on the depinning fields. These
results demonstrate that the depinning fields summarized in
Fig. 2 for curvatures in the unshaded area originate from the
curvature-induced exchange-driven DMI interaction. In the
shaded area, usually for large curvatures, the parabolic stripes
become wedge shaped, resulting in a local widening of
the apex area. This leads to a change of the domain wall
profile (see Supplemental Material Secs. S6 and S7 [40]) and

in the modification of the shape anisotropy arising from the
magnetostatic interaction.
Using a one-dimensional q-Φ model [39] in the curvi-

linear frame of references, we analytically determine the
energy landscape along the parabolic stripe [see Fig. S7(f)
in Sec. S6 in Ref. [40] ] as a function of the external field;
see Sec. S6 in Ref. [40]. The exchange-driven DMI creates
a potential well for the transverse DWs, which are naturally
forming during the reversal process. To remove a pinned
DW, it is necessary to apply a depinning field BDMI, which
modifies the energy landscape such that the DW can move
out into one of the parabolic branches. Thus, the exper-
imentally determined values of the DW depinning fields
BDMI allow us to make a direct quantitative assessment of
the exchange-driven DMI constant:

DE ¼ BDMIMsl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πW
H½2 lnðW=HÞ þ 3�

s

; ð1Þ

where Ms is the saturation magnetisation and l is the
exchange length.
As a final step, we calculate the strength of the exchange-

driven DMI constants based on Eq. (1) for all experimental
and simulation results. The dependence of DE on κ0 for
parabolic stripes with different widths is summarized in
Fig. 3. Varying the geometrical parameters of the stripe
(e.g., W and κ0), the value of DE can be tuned in a wide
range. Among the experimentally realized geometries,
the largest value, namely, ≈0.4 mJ=m2, is found for the
parabolas withW ¼ 75 nm and κ0 ¼ 0.05 nm−1. Note that
this value is comparable with those experimentally reported
values obtained for asymmetric Co sandwiches [53] with
interfacial DMI. This comparison can be made due to the
following reason: The symmetry of the exchange-driven

FIG. 3. Exchange-driven effective DMI constant. Dependencies of the exchange-driven DMI DE constants on curvature κ0 for
different parabolic stripe widths. Results show that its value can be tuned over a broad interval by tailoring the apex curvature. The inset
pictures represent the distribution of the DE along the parabolic stripe apex. Scale bars correspond to 100 nm for all the inset pictures.
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DMI depends on the geometrical curvatures such that its
vector is always perpendicular to the local bending
plane [54]. The consequence of this symmetry leads to
the stabilization of magnetic textures with a preferred
chirality similar to the case of conventional spin-orbit
DMI, emergent at interfaces of thin ferromagnetic films
and heavy metals [55].
In summary, we have shown that the exchange-driven

chiral effects in curvilinear ferromagnets are experimen-
tally observable rather than just theoretical abstraction.
Furthermore, we could quantify from the experimental
results, supported by micromagnetic simulations and ana-
lytics, the strength of the effective exchange-driven DMI
constant, which is found to be remarkably strong compared
to the surface-induced DMI. Its value can be tuned by
tailoring local curvatures and shapes of ferromagnets—in
the present case, by the parabola’s curvature. Finally, it
should be emphasized that these exchange-driven chiral
effects are observable on well-studied “classical” ferro-
magnets with orders of magnitude larger dimensions than
the exchange length and, therefore, do not require exotic
materials or special fabrication routines. The presented
study legitimates the predictive power of full-scale micro-
magnetic simulations to design the properties of ferromag-
nets through their geometry, thus stabilizing chiral textures.
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