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In a number of physical situations, from polarons to Dirac liquids and to non-Fermi liquids, one encounters
the “beyond quasiparticles” regime, in which the inelastic scattering rate exceeds the thermal energy of
quasiparticles. Transport in this regime cannot be described by the kinetic equation. We employ the
diagrammatic Monte Carlo method to study the mobility of a Fröhlich polaron in this regime and discover a
number of nonperturbative effects: a strong violation of the Mott-Ioffe-Regel criterion at intermediate and
strong couplings, a mobility minimum at T ∼ Ω in the strong-coupling limit (Ω is the optical mode
frequency), a substantial delay in the onset of an exponential dependence of the mobility for T < Ω at
intermediate coupling, and complete smearing of the Drude peak at strong coupling. These effects should be
taken into account when interpreting mobility data in materials with strong electron-phonon coupling.
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Mobility of nondegenerate charge carriers in ionic
semiconductors with strong electron-phonon coupling is
a long-standing problem [1–3]. Textbook treatment starts
with the notion of a transport scattering time τ controlling
momentum relaxation in the equation of motion _p ¼
E − p=τ, where E is the external electric field (we set
e ¼ 1, ℏ ¼ 1, and kB ¼ 1, for brevity). The underlying
assumption is that all effects originating from coupling the
particle to its environment (in this work we consider a
single particle coupled to a translationally invariant bath)
are reduced to an effective friction force. The equation
of motion leads to a familiar result for the frequency-
dependent Drude mobility,

μðωÞ ¼ τ=M
1 − iωτ

; ð1Þ

with M being the bare particle mass.
Deducing the scattering time from the dc mobility by

using τ ¼ μð0ÞM≡ μM faces a problem because coupling
to the environment necessarily leads to mass renormaliza-
tion, M → M�. One might argue that substituting M�

instead of M into Eq. (1) would solve the issue.
However, this procedure implicitly assumes that M� can
be measured or calculated separately in a setup where
particles propagate coherently and relaxation processes can
be neglected at the relevant energy scales. In other words,
one has to require that EτðE; TÞ ≫ 1 (in general, τ may
depend on the particle energy, E), or

τðTÞ ≫ 1=T; ð2Þ

if E is replaced with the typical thermal energy ðd=2ÞT,
with d being the spatial dimension. Here, τðTÞ should be
understood as the inelastic scattering time. For elastic
scattering, either by impurities or by phonons above the
Bloch-Grüneisen temperature, condition (2) is not relevant
[4]. Likewise, it can be strongly violated in lattice models
in the hopping mobility regime [5,6], when the local rather
than momentum representation is more adequate.
Condition (2) can be reformulated as l ≫ λT , where l
is the mean free path and λT is the particle de Broglie
wavelength. In this form, it coincides with the “thermal”
version of the Mott-Ioffe-Regel (MIR) criterion for the
validity of the kinetic equation approach, which has
attracted a lot of attention recently in the context of bad
and strange metals [7–9].
In this Letter, we analyze the violation of the MIR

criterion for a tractable yet nontrivial system, namely, the
Fröhlich polaron model [10]. Apart from being a canonical
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polaron problem [11,12], it plays the main role in under-
standing charge transport in ionic semiconductors. It is
described by the Hamiltonian H ¼ He þHph þHe-ph,
where

He ¼
X
k

k2

2M
c†kck; Hph ¼

X
q

Ωb†qbq; ð3Þ

He-ph ¼
X
k;q

VðqÞðb†q − b−qÞc†k−qck; ð4Þ

with VðqÞ ¼ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
23=2πΩ3=2α=M1=2q2

p
. Coupling between

electrons and optical phonons with energy Ω can no longer
be assumed weak when the dimensionless constant α > 1.
Perturbation theory predicts that the polaron Z factor in the
ground state is given by Z ¼ 1 − α=2 to leading order [2].
As revealed by stochastically exact diagrammatic
Monte Carlo (diagMC) simulations [13,14], the actual Z
factor is about 0.3 already at α ¼ 2 and drops down to
≈0.01 at α ¼ 6.
As far as the Fröhlich polaron mobility at finite temper-

ature is concerned, rigorous analytical results can only be
obtained within some version of perturbation theory, based
either on weak coupling or the Migdal theorem. In the anti-
adiabatic regime (T ≪ Ω), one can only rely on weak
coupling (α ≪ 1). This limit was considered by Kadanoff,
and Langreth and Kadanoff [2], who calculated all dia-
grams for μ up to order Oð1=αÞ þOð1Þ with the result

μ¼ eΩ=T

2M�αΩ
¼ 1=α−1=6

2MΩ
eΩ=T; ðT≪Ω;α≪ 1Þ; ð5Þ

The Oð1Þ correction accounts for effective mass renorm-
alization, M� ¼ M=ð1 − α=6Þ, and is legitimate. The pre-
exponential factor in Eq. (5) (which was also obtained in
Ref. [15]) has been a subject of long-standing controversy
[16–21], with results both larger than that in Eq. (5) by a
factor of 3 and smaller by factors of 3T=2Ω or 5T=Ω. Our
data are best described by Eq. (5). There is also a number of
variational results; a widely used one is the Low and Pines
formula [1], which has the same form as Eq. (5) with
M�¼Mð1þα=6Þ3=fðαÞ, where fðαÞ ≈ 5=4 for 3 < α < 6.
In the adiabatic limit (T ≫ Ω), one can neglect vertex
corrections when computing the scattering rate and find the
mobility from the kinetic equation, whose solution is
radically simplified by the fact that scattering is quasielastic.
The result is a mobility that slowly decreases with T [22],

μ ¼ 4

3
ffiffiffi
π

p
αM

ffiffiffiffiffiffiffi
ΩT

p ðT ≫ ΩÞ: ð6Þ

The 1=
ffiffiffiffi
T

p
scaling of μ is a combination of the T scaling of

the phonon occupation numbers and the
ffiffiffiffi
T

p
scaling of the

thermal velocity. In contrast to Eq. (5), α is not required to be
small for Eq. (6) to be valid.
For α ≫ 1 both limits predict that at T ∼ Ω one enters the

“beyond quasiparticles” regime, in which τðTÞ—defined as
MμðTÞ—is shorter than the Planckian bound. As far as we
know, the mobility of Fröhlich polarons has never been
computed with controlled accuracy in this parameter
regime.
In this Letter, we address this unsolved problem by

extending the diagMC method [13,14] to finite temper-
atures in combination with analytic continuation methods
[14,23,24] and computing the mobility from the Matsubara
current-current correlation function. We find that for α > 1
the MIR condition, formulated as μ ≫ 1=MT, is indeed
violated. Contrary to expectations based on perturbation
theory, the exponential increase of the mobility with
decreasing temperature, Eq. (5), is observed only at
temperatures significantly below Ω. Even more surprising
is a mobility minimum developing at T ∼Ω for large values
of α. We interpret both effects as a competition between the
decreasing number of thermal excitations and a strong
enhancement of the polaron mass, both of which are taking
place as temperature is lowered.
Method.—As far as the diagMC method is concerned,

our finite temperature calculation (in which we used the
units M ¼ Ω ¼ 1) is similar to that employed for calculat-
ing the optical conductivity in Ref. [25] for T ¼ β−1 → 0.
The difference is that now phonon propagators in imagi-
nary time are temperature dependent, DðτÞ ¼ ½e−Ωτþ
eΩτ−Ωβ�=½1 − e−Ωβ�, and we do not assume that e−Ωβ is
small. A typical diagram contributing to the current-
current correlation function Cðτ − τ0Þ ¼ d−1hvðτÞvðτ0Þi≡
ðdM2Þ−1hkðτÞkðτ0Þi is shown in Fig. 1. By using
Matsubara frequencies, ωm ¼ 2πmT (with m integer),
we obtain an efficient unbiased Monte Carlo estimator
for its Fourier transform,

FIG. 1. A typical Feynman diagram contributing to the current-
current correlation function. Solid (dashed) lines stand for
electron (phonon) propagators G (D), dots represent interaction
vertices jVj, and crosses mark velocity vertices.
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Cm ¼
Z

β

0

dτCðτÞeiωmτ ≡ 1

dβM2
hjkmj2i: ð7Þ

The value of km for a diagram of order N is readily found
from the electron momenta fkig in imaginary time inter-
vals i ¼ 1;…; 2N ranging from τi to τiþ1 (cf., Fig. 1),

km ¼
Z

β

0

dτkðτÞeiωmτ ¼
X2N
i

ki
eiωmτiþ1 − eiωmτi

iωm
: ð8Þ

There are several exact and asymptotic relations that the
correlation function has to satisfy. Any of them can be used
as an independent check on the accuracy of the data. For the
equal-time correlator we find that T

P
m Cm ¼ hk2i=dM2.

The sum rule for the mobility translates into Cm¼0 ¼ M−1.
The asymptotic behavior in the limit of large jmj comes
from diagrams containing very short time intervals
τiþ1 − τi ¼ Δτ → 0 with large particle momenta ki ∼
1=

ffiffiffiffiffiffi
Δτ

p
→ ∞. Dressing such intervals by vertex corrections

is not necessary because it would result in additional factors
of

ffiffiffiffiffiffi
Δτ

p
. Therefore, one can use perturbation theory to

compute the high-frequency limit with the final result

Cm→∞ →
2

ffiffiffi
2

p
αΩ3=2 coth½Ωβ=2�

dMω3=2
m

: ð9Þ

To determine the mobility, one needs to perform the
analytic continuation numerically, which amounts to
inverting the Kramers-Kronig transformation

Cm ¼ 2

π

Z
∞

0

dω
ω2μðωÞ
ω2 þ ω2

m
: ð10Þ

The asymptotic behavior implied byCm immediately yields
the asymptotic behavior of μðωÞ

μðω → ∞Þ → 2αΩ3=2 coth½Ωβ=2�
dMω5=2 ;

which can be used to subtract the leading tail contribution
when performing the analytic continuation. The nature of
Eq. (10) is such that even tiny error bars on Cm translate
into large uncertainties on integrals of μðωÞ over physically
relevant intervals. All errors on the μðωÞ function itself are
conditional and depend on constraints for allowed behavior
[23]. In this work, Monte Carlo data for the lowest
Matsubara frequencies were accurate at the level of five
to six significant digits.
Our analytic continuation method for solving Eq. (10) is

similar to the one used in Ref. [5]. The main difference is
that we extract μðωÞ from the data parametrized by the
Matsubara frequency rather than imaginary time. We also
employ more conservative protocols for computing both

the mobility and its error bars from multiple solutions of the
stochastic optimization with the consistent constraints
method (see Supplemental Material) [14,23].
Results.—To begin with, we verified that our results for

the mobility are fully consistent with the predictions (5) and
(6) based on perturbation theory for small α ¼ 0.25. In this
case, the MIR criterion is not violated even at T ∼Ω; i.e.,
the mobility remains large compared to 1=MT. When the
coupling strength is increased to α ¼ 2.5, the situation
changes. As Fig. 2 shows, the MIR criterion is violated over
a broad temperature interval 0.2 < T=Ω < 10. The data for
T > Ω approach the limiting form in Eq. (6), as expected,
because Eq. (6) is valid for any α. On the other hand, one
should not expect the low-temperature formula (5) to be
valid beyond weak coupling. Indeed, it is clear from Fig. 2
that a slower than exponential temperature dependence
extends down to at least T ∼ Ω=2. At lower temperatures,
our data are consistent with the exponential increase of the
mobility, but uncertainties amplified by the analytic con-
tinuation procedure become too large for a meaningful
analysis.
A delay (at T < Ω) in the onset of the exponential

dependence may be anticipated already from perturbation
theory. Indeed, matching Eqs. (5) and (6), we find that the
crossover temperature

Tcr ∼
Ω
ln λ

�
1 −

ln ln λ
2 ln λ

þ � � �
�

ð11Þ

with λ≡M�=M is (logarithmically) suppressed compared
to Ω for λ ≫ 1.

1/MT

Ω

μ

FIG. 2. Black dots: mobility of a Fröhlich polaron as a function
of temperature at intermediate coupling (α ¼ 2.5). Blue and
green lines are predictions based on Eqs. (5) and (6), respectively.
Below the dashed red line, μ ¼ 1=MT, the MIR criterion is
violated.
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One might argue that the MIR criterion cannot be
specified down to a well-defined numerical factor and,
thus, having μMT ¼ 1=4 for α ¼ 2.5 is merely a borderline
situation. However, the strong coupling case (α ¼ 6)
(cf., Fig. 3) shows that there is no obvious limit on how
small the value of μMT can be. Even more surprising is the
finding that the mobility develops a minimum at T=Ω≲ 1
and that the high-temperature limit is recovered only after a
maximum at T=Ω ∼ α; see Fig. 3. The μMT value at the
minimum is about 1=30.
The mobility minimum for lattice polarons is a well-

established phenomenon (see, e.g., Refs. [5,6,27–29]),
known as “activated hopping” between lattice sites.
However, Frohlich polarons are defined in the continuum,
where the very notion of “hopping” makes no sense, and
reasoning based on the existence of lattice is not applicable.
We are not aware of any work which showed the mobility
minimum to occur for Fröhlich polarons, as well as of any
calculations capable of reliably predicting the behavior of
the polaron mobility near and below the MIR threshold. To
understand the origin of the nonmonotonic behavior, we
note that for α ¼ 6 the effective mass renormalization at
low temperatures and small momenta is very strong,
M�=M ≈ 7.3 [14], while the physics at high temperatures
is still captured by the Migdal theorem. The mobility
minimum then emerges from the competition between the
decreasing number of thermal excitations and the strong
particle mass renormalization: The former dominates at
T=Ω ≪ 1, while the latter is more important at T=Ω≳ 1.

If renormalization of the effective mass, which is
temperature and energy dependent, does play such an
important role, then the dependence of μ on ω should be
radically different from the prediction of the Drude model
in Eq. (1). To check this assertion we calculated the real part
of μðω; TÞ which is presented in Fig. 4. At the two lowest
temperatures (T ¼ 0.125 and T ¼ 0.25Ω), μðω; TÞ exhibits
a narrow Drude peak at low frequencies and a broad
maximum at intermediate frequencies. In the context of
small lattice polarons, the broad maximum in the mobility
is commonly attributed to ionization of bound states [30].
In a broader context, however, this maximum is referred to
as “Holstein band” and arises because emission of phonons
is activated for ω above the characteristic phonon frequency
[31,32]. The Fröhlich model is just one example; another
one is the Holstein model the result for which is shown in
the inset in Fig. 4.
For T=Ω≳ 0.5 the Drude peak in the mobility disap-

pears. Moreover, for T=Ω≳ 2.0 the broad maximum
becomes barely distinguishable. Strong restructuring of
spectral properties at strong coupling is anticipated [18],
but the observed “anti-Drude” behavior is rather unex-
pected. Any attempt to extract the scattering time from the
frequency dependence of the mobility obviously fails in
this regime. Our interpretation instead is to use the
physically appealing relation τ−1 ∼ E ∼ T in order to

1/MT

Ω

μ

FIG. 3. Mobility of a Fröhlich polaron as a function of
temperature at strong coupling (α ¼ 6). All notations are identical
to those in Fig. 2. Equation (5) is plotted using the exact result
M� ¼ 7.3 instead of its perturbative approximation; otherwise the
curve would go unphysical. The Low-Pines formula [1] is shown
by a dotted line [26].

T/Ω

FIG. 4. The real part of the mobility for α ¼ 6 as a function of
frequency at different temperatures. At low temperatures (red and
blue curves) we observe a well-defined Drude peak. In the
temperature interval 0.5 ≤ T=Ω ≤ 4 the mobility has a local
minimum at ω ¼ 0 that cannot be explained within the kinetic-
equation approach. Only at T=Ω ¼ 8 the situation changes back
to having a (barely visible) broad maximum at ω ¼ 0. For
comparison, the inset displays the real of part of the mobility
for a Holstein polaron at weak coupling [22].
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conclude that the effective mass defined through M� ∼ τ=μ
undergoes strong renormalization as the temperature is
lowered down to T < Ω (which is further confirmed by
calculating the effective mass at T ¼ 0).
Even if the mobility retains a Drude peak but the MIR

criterion is violated, the scattering time cannot be
extracted from the Drude formula. This is supported
by an example of a heavy particle with a large transport
scattering cross section embedded into a Fermi sea, e.g.,
an electron bubble in 3He. Its mobility is described by
Eq. (1), cast in the form μðωÞ ¼ 1=MðΓ − iωÞ, with a
width Γ ≈ const down to temperatures exponentially
lower than Γ [33]. This result is also well known in
the context of Ohmic dissipative models [34,35].
Interpreting Γ as the scattering rate at temperatures
T ≪ Γ implies that the particle mass is not renormalized.
However, if the Planckian bound on the scattering
rate 1=τðTÞ is to be obeyed, one is forced to conclude
that the effective mass has to diverge as M� ∝ MΓ=T in
order to maintain a constant dc mobility μ ¼ 1=MΓ∼
τðTÞ=M�ðTÞ. That the last interpretation is physically
correct is revealed by considering the superfluid state at
T ≪ TC ≪ Γ, when the undamped particle motion is
controlled by the strongly renormalized effective mass
M� ∝ MΓ=TC [33].
In conclusion, we have studied the problem of electron

mobility in ionic semiconductors in the temperature regime
where the MIR criterion for the applicability of the kinetic-
equation approach is violated. We found that the mobility
can be orders of magnitude smaller than the MIR value
of 1=MT. This result is consistent with recently observed
MIR violation for nondegenerate charge carriers in doped
SrTiO3 [36]. At strong coupling, the mobility has a
minimum at a temperature comparable to the optical mode
frequency and increases with a further increase of the
temperature despite the fact that the number of thermally
excited phonons grows linearly with T. We ascribe this
behavior to the “undressing” of polarons at higher temper-
atures. After going through a maximum at T ≫ Ω, the
mobility follows the μ ∼ T−1=2 law predicted by the kinetic
equation.
Open Data for this project can be found by following the

link in Ref. [37].

We acknowledge stimulating discussions with K.
Behnia, D. B. Tanner, and T. Timusk. This work was
initiated and partially performed at Aspen Center for
Physics supported by the National Science Foundation
Grant No. PHY-1607611. We acknowledge support by the
Simons Collaboration on the Many Electron Problem
(N. P.), the National Science Foundation under Grants
No. DMR-1720465 (N. V. P.) and DMR-1720816 (A. K.
and D. L. M.), the ImPACT Program of the Council
for Science, Technology and Innovation (Cabinet Office,
Government of Japan) and JST CREST Grant
No. JPMJCR1874, Japan (A. S. M.), and by FP7/ERC

Consolidator Grant QSIMCORR No. 771891, the
Nanosystems Initiative Munich and the Munich Center
for Quantum Science and Technology (L. P.).

[1] F. E. Low and D. Pines, Phys. Rev. 98, 414 (1955).
[2] L. P. Kadanoff, Phys. Rev. 130, 1364 (1963); D. C. Langreth

and L. P. Kadanoff, Phys. Rev. 133, A1070 (1964).
[3] Polarons in Advanced Materials, edited by S. A.

Alexandrov (Canopus/Springer, Bristol, 2007).
[4] E. M. Lifshitz and L. P. Pitaevskii, Physical Kinetics,

Course of Theoretical Physics (Butterworth-Heinemann,
Burlington, 1981), Vol. X.

[5] A. S.Mishchenko, N. Nagaosa, G. De Filippis, A. de Candia,
and V. Cataudella, Phys. Rev. Lett. 114, 146401 (2015).

[6] T. Holstein, Ann. Phys. (N.Y.) 8, 343 (1959).
[7] See, e.g., S. A. Hartnoll, A. Lucas, and S. Sachdev, Holo-

graphic Quantum Matter (MIT Press, Cambridge, MA,
2018) and references therein.

[8] S. A. Hartnoll, Nat. Phys. 11, 54 (2015).
[9] J. A. N. Bruin, H. Sakai, R. S. Perry, and A. P. Mackenzie,

Science 339, 804 (2013).
[10] H. Fröhlich, H. Pelzer, and S. Zienau, Philos. Mag. 41, 221

(1950).
[11] L. D. Landau, Phys. Z. Sowjetunion 3, 664 (1933); Col-

lected Papers (Gordon and Breach, New York, 1965).
[12] J. Appel, in Solid State Physics, edited by H. Ehrenreich, F.

Seitz, and D. Turnbull (Academic Press, New York, 1968),
Vol. 21.

[13] N. V. Prokof’ev and B. V. Svistunov, Phys. Rev. Lett. 81,
2514 (1998).

[14] A. S. Mishchenko, N. V. Prokof’ev, A. Sakamoto, and B. V.
Svistunov, Phys. Rev. B 62, 6317 (2000).

[15] G. D. Mahan, Phys. Rev. 142, 366 (1966).
[16] R. P. Feynman, R. W. Hellwarth, C. K. Iddings, and P. M.

Platzman, Phys. Rev. 127, 1004 (1962).
[17] F. M. Peeters and J. T. Devreese, Phys. Status Solidi B 115,

539 (1983); Solid State Physics, edited by F. Seitz and D.
Turnbull (Academic Press, New York, 1984), Vol. 38.

[18] F. M. Peeters and J. T. Devreese, Phys. Rev. B 28, 6051
(1983).

[19] V. F. Los, Theor. Math. Phys. 60, 703 (1984).
[20] D. Sels and F. Brosens, Phys. Rev. E 89, 012124 (2014).
[21] G. De Filippis, V. Cataudella, A. de Candia, A. S.

Mishchenko, and N. Nagaosa, Phys. Rev. B 90, 014310
(2014).

[22] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.123.076601 for details
of the numerical procedure and analytic solution of the
Boltzmann equation in the adiabatic regime.

[23] O. Goulko, A. S. Mishchenko, L. Pollet, N. Prokof’ev, and
B. Svistunov, Phys. Rev. B 95, 014102 (2017).

[24] A. S. Mishchenko, Correlated Electrons: From Models to
Materials, edited by E. Pavarini, W. Koch, F. Anders, and
M. Jarrel (Forschungszentrum Julich GmbH, Julich, 2012),
p. 14.1.

[25] A. S. Mishchenko, N. Nagaosa, N. V. Prokof’ev, A.
Sakamoto, and B. V. Svistunov, Phys. Rev. Lett. 91, 236401
(2003).

PHYSICAL REVIEW LETTERS 123, 076601 (2019)

076601-5

https://doi.org/10.1103/PhysRev.98.414
https://doi.org/10.1103/PhysRev.130.1364
https://doi.org/10.1103/PhysRev.133.A1070
https://doi.org/10.1103/PhysRevLett.114.146401
https://doi.org/10.1016/0003-4916(59)90003-X
https://doi.org/10.1038/nphys3174
https://doi.org/10.1126/science.1227612
https://doi.org/10.1080/14786445008521794
https://doi.org/10.1080/14786445008521794
https://doi.org/10.1103/PhysRevLett.81.2514
https://doi.org/10.1103/PhysRevLett.81.2514
https://doi.org/10.1103/PhysRevB.62.6317
https://doi.org/10.1103/PhysRev.142.366
https://doi.org/10.1103/PhysRev.127.1004
https://doi.org/10.1002/pssb.2221150225
https://doi.org/10.1002/pssb.2221150225
https://doi.org/10.1103/PhysRevB.28.6051
https://doi.org/10.1103/PhysRevB.28.6051
https://doi.org/10.1007/BF01018255
https://doi.org/10.1103/PhysRevE.89.012124
https://doi.org/10.1103/PhysRevB.90.014310
https://doi.org/10.1103/PhysRevB.90.014310
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.076601
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.076601
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.076601
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.076601
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.076601
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.076601
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.076601
https://doi.org/10.1103/PhysRevB.95.014102
https://doi.org/10.1103/PhysRevLett.91.236401
https://doi.org/10.1103/PhysRevLett.91.236401


[26] A popular modification of the Low-Pines formula with the
exponential factor replaced by the inverse Bose function,
eΩ=T → eΩ=T − 1 [see, e.g., H. P. R. Frederikse and W. R.
Hosler, Phys. Rev. 161, 822 (1967)], does not reproduce the
correct scaling of the mobility at T ≫ Ω given by Eq. (6).

[27] L. Friedman and T. Holstein, Ann. Phys. (N.Y.) 21, 494
(1963).

[28] F. Ortmann, F. Bechstedt, and K. Hannewald, Phys. Rev. B
79, 235206 (2009).

[29] F. Ortmann, F. Bechstedt, and K. Hannewald, J. Phys.
Condens. Matter 22, 465802 (2010).

[30] See, e.g., D. Emin, Phys. Rev. B 48, 13691 (1993) and
references therein.

[31] P. B. Allen, Phys. Rev. B 3, 305 (1971).
[32] D. N. Basov and T. Timusk, Rev. Mod. Phys. 77, 721

(2005).
[33] N. V. Prokof’ev, Int. J. Mod. Phys. B 07, 3327 (1993).
[34] A. Schmid, Phys. Rev. Lett. 51, 1506 (1983).
[35] S. A. Bulgadaev, Sov. Phys. JETP 63, 369 (1986).
[36] X. Lin, C. W. Rischau, L. Buchauer, A. Jaoui, B. Fauqué,

and K. Behnia, npj Quantum Materials 2, 41 (2017).
[37] https://gitlab.lrz.de/QSIMCORR/mobilityfroehlich.

PHYSICAL REVIEW LETTERS 123, 076601 (2019)

076601-6

https://doi.org/10.1103/PhysRev.161.822
https://doi.org/10.1016/0003-4916(63)90130-1
https://doi.org/10.1016/0003-4916(63)90130-1
https://doi.org/10.1103/PhysRevB.79.235206
https://doi.org/10.1103/PhysRevB.79.235206
https://doi.org/10.1088/0953-8984/22/46/465802
https://doi.org/10.1088/0953-8984/22/46/465802
https://doi.org/10.1103/PhysRevB.48.13691
https://doi.org/10.1103/PhysRevB.3.305
https://doi.org/10.1103/RevModPhys.77.721
https://doi.org/10.1103/RevModPhys.77.721
https://doi.org/10.1142/S0217979293003255
https://doi.org/10.1103/PhysRevLett.51.1506
https://doi.org/10.1038/s41535-017-0044-5
https://gitlab.lrz.de/QSIMCORR/mobilityfroehlich
https://gitlab.lrz.de/QSIMCORR/mobilityfroehlich
https://gitlab.lrz.de/QSIMCORR/mobilityfroehlich

