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We study amorphous systems with completely random sites and find that, through constructing and
exploring a concrete model Hamiltonian, such a system can host an exotic phase of topological amorphous
metal in three dimensions. In contrast to the traditional Weyl semimetals, topological amorphous metals
break translational symmetry, and thus they cannot be characterized by the first Chern number defined
based on the momentum space band structures. Instead, their topological properties will manifest in the
Bott index and the Hall conductivity as well as the surface states. By studying the energy band and quantum
transport properties, we find that topological amorphous metals exhibit a diffusive metal behavior. We
further introduce a practical experimental proposal with electric circuits where the predicted phenomena
can be observed using state-of-the-art technologies. Our results open the door to exploring topological
gapless phenomena in amorphous systems.
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Weyl semimetals, three-dimensional (3D) materials with
Weyl points in band structures [1–4], have attracted
considerable interest [5–23] in recent years owing to their
fundamental importance in mimicking Weyl fermions in
particle physics and their exotic topological properties.
In the context of solid-state materials, the linear energy
band dispersion around a Weyl point determines the
semimetal property with a zero density of states (DOS)
at zero energy. In addition, the Weyl point is protected by
the first Chern number defined by the integral of Berry
curvatures over a closed surface in momentum space
enclosing the point [24], leading to a Fermi arc consisting
of surface states. This topological feature gives rise to the
topological anomalous Hall effect [6,7]. Beyond Weyl
fermions that exist in particle physics, new fermions, such
as type II Weyl fermions [25–27] (also called structured
Weyl fermions [28]) and high spin fermions [29,30], can
appear in topological gapless materials.
All of these topological gapless materials feature

the existence of gapless structures in momentum space
so that the topological invariants can be further defined
there. Yet, this can only be guaranteed in a crystalline
material with translational symmetry. Here, we ask whether
a topological semimetal or metal can exist in an amorphous
system with completely random sites, such as glass
materials, where the desired translational symmetry is
absent. Recent development of technologies in engineering
in quantum systems such as arbitrary positioning of atoms
[31,32] and, in mechanical systems, such as constructing
interacting gyroscopes [33] have paved the way for
fabricating amorphous materials. However, the study of
topological phenomena in amorphous systems is still in its

infancy stage, and only a few works demonstrating the
existence of topological insulators in amorphous systems
have been published [33–40]. Whether topological semi-
metals or metals exist in amorphous systems has not been
explored hitherto.
In this paper, we demonstrate, by constructing and

exploring a model Hamiltonian, the existence of a topo-
logical metal phase in a 3D amorphous system. The system
is generated by randomly sampling sites in a box (see Fig. 1
for one sample configuration), and the results are obtained
by averaging over many sample configurations. We find
three distinct phases—namely, the topological amorphous
metal (TAM), amorphous Anderson insulator (AAI), and
amorphous insulator (AI) phases. In contrast to Weyl
semimetals with translational symmetry, where their top-
ology can be characterized by the first Chern number, the

FIG. 1. Schematic of a 3D random site configuration with the
allowed hopping inside the light red sphere for a typical site at the
center.
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topological feature of our amorphous system is identified
using the Bott index, the Hall conductivity, and the surface
states. To determine whether a phase in the amorphous
system is a metal, a semimetal, or an insulator, we compute
the band properties including the energy gap, the DOS, the
level statistics, and the inverse participation ratio, and the
transport properties including the longitudinal conductivity
and the Fano factor. We find that, in the majority of the
parameter region where the Bott index and the Hall
conductivity are nonzero, the system is gapless, exhibiting
a diffusive metal behavior. The other regions correspond to
the insulating phase where the longitudinal conductivity
drops to zero and the Fano factor suddenly rises to 1. The
insulator can be further divided into the AAI with a nonzero
DOS and the AI with a zero DOS. Finally, we introduce a
practical scheme to realize such a Hamiltonian and observe
its related exotic phenomena in electric circuits.
Model Hamiltonian.—We start by constructing the

following model Hamiltonian,

H ¼
X

x

�X

R

tðRÞĉ†xH0ðθ;ϕÞĉxþRðθ;ϕÞ þmzĉ
†
xσzĉx

�
; ð1Þ

where ĉ†x ¼ ðĉ†x;↑; ĉ†x;↓Þ, with ĉ†x;σ creating a fermion with
spin σ at the position x, which is a random vector uniformly
distributed in the box, xν ∈ ð0; LνÞ with ν ¼ x, y, z,
Rðθ;ϕÞ denotes the neighboring sites shown in Fig. 1,
σν (ν ¼ x, y, z) are the Pauli matrices, and mz is the mass
term. H0ðθ; ϕÞ ¼ σz þ i sin θ cos ϕσx þ i sin θ sin ϕσy
describes the hopping matrix for the neighboring sites
shown in Fig. 1. We are inspired to construct such a
Hamiltonian by the fact that it reduces to a well-studied
Weyl semimetal model [3] when only the nearest-neighbor
hopping is considered. In light of irregular sites, we
consider a case where the hopping strength decays expo-
nentially, tðRÞ ¼ −eλð1−RÞ=2, with R being the spatial
distance between two sites, where we have chosen the
units of energy and length to be 1 for simplicity. Here, we
take λ ¼ 3, the cutoff distance Rc ¼ 2.5 so that the hopping
is neglected when R > Rc [41], and the site density
ρ ¼ N=V ¼ 1, where N is the number of sites and
V ¼ LxLyLz is the volume of the system. For randomly
distributed sets of x, the system does not respect transla-
tional, time-reversal, or inversion symmetries. Owing to the
random character, for numerical calculation, all of our
results are averaged over 180–600 sample configurations.
In Fig. 2(a), we map out the phase diagram with respect

to the mass mz incorporating three distinct phases (assum-
ing that the Fermi surface lies at zero energy): the TAM,
AAI, and AI phases, according to the Bott index (or Hall
conductivity) and the band and transport properties, which
will be discussed in detail in the following. For a topo-
logical phase, the Bott index B is nonzero. For a diffusive
metal, the energy gap is zero, the DOS and conductivity are
nonzero, and the Fano factor is 1=3. For an insulator, the

conductivity is zero and the Fano factor is 1. In our system,
there are two types of insulators: the Anderson insulator
with a nonzero DOS and the band insulator with a zero
DOS. Our results are summarized in Table I.
Bott index and Hall conductivity.—In order to character-

ize the topology of the 3D amorphous system, we general-
ize the Bott index B originally defined in 2D [45] by
defining it as

B ¼ 1

2πLz
ImTr logðŨyŨxŨ

†
yŨ

†
xÞ; ð2Þ

where Ũx and Ũy are the reduced matrices for Ux ¼
P̂e2πix̂=LxP̂ and Uy ¼ P̂e2πiŷ=LyP̂ in the occupied space,
respectively. Here, x̂ and ŷ are the position operators, and P̂
is the projection operator for the occupied space. As we are
interested in the case in which the Fermi energy lies at
zero energy, we consider the states with negative energy
as the occupied space for calculating the Bott index. We
prove that this generalized Bott index is equivalent to the
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FIG. 2. (a) The Bott index and the Hall conductivity in units
of e2=ð2hÞ as a function of mz for distinct system sizes. The
black line denotes the Bott index for a cubic lattice configuration.
Three different phases are identified: amorphous Anderson insu-
lator (AAI), topological amorphous metal (TAM), and amorphous
insulator (AI). (b) Schematic of a four terminal setup used to
compute the Hall conductivity, where we consider the cubic
geometry for all leads (see the dotted part for V2 ¼ V). (c),
(d) The local density of states formz ¼ 2 andmz ¼ 6, respectively.

TABLE I. Topological, band, and transport properties of three
distinct phases. Note that, in the AI phase, the states around the
zero energy are localized with LSR ∼ 0.39 and IPR > 0.

Phase jBj (jσxyj) ρð0Þ Gap jσzzj Fano factor LSR IPR

TAM > 0 > 0 ∼0 > 0 ∼1=3 ∼0.6 ∼0
AAI ∼0 > 0 ∼0 ∼0 ∼1 ∼0.39 > 0
AI ∼0 ∼0 > 0 ∼0 ∼1 � � � � � �
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topological anomalous Hall conductivity for a Weyl semi-
metal (which need not be quantized) in Ref. [41].
In Fig. 2(a), we plot the Bott index as a function of mz

for different system sizes. Remarkably, the amorphous
system exhibits nonzero values for the Bott index when
−2.8≲mz ≲ 9.6, suggesting the topological feature of the
system. Compared to the cubic lattice configuration, there
appears a topologically nontrivial region for the amorphous
system, which is topologically trivial in a crystalline one.
We can also observe that the absolute value of the Bott
index is no longer symmetric with respect to mz [46] when
the long-range hopping is involved; this explains why there
only exists a very small region with the positive Bott index.
In addition, the Bott index in the TAM region exhibits
several plateaus whose locations change with respect to the
system size, reflecting the finite size effect, similar to the
case of a crystalline Weyl semimetal.
To show that the Bott index reflects the Hall conductivity

in a randomized system, we numerically calculate the Hall
conductivity using the Landauer-Büttiker formula in a
mesoscopic system. We consider four ideal leads connected
to the amorphous system in the x and y directions as
schematically shown in Fig. 2(b), as we expect a surface
state to appear on the surfaces vertical to these directions.
Under the voltage V1 ¼ V3 ¼ V=2, V2 ¼ V, and V4 ¼ 0,
the Hall conductivity is given by [47]

σxy ¼
e2

2hLz
ðT32 − T34Þ; ð3Þ

where Tmn is the total transmission probability from lead n
to m, which is computed using the nonequilibrium Green’s
function method [47,48]. As T32 − T34 accounts for the
contribution from chiral edge modes, for a Weyl semimetal,
σxy is equivalent to the Bott index multiplied by e2=ð2hÞ,
and we expect this equivalence also to hold in an amor-
phous system.
In Fig. 2(a), we show the Hall conductivity in compari-

son to the Bott index. We notice the clear consistence
between them in a wide range of mz in an amorphous
system, as we expected. For the slight discrepancy, we
estimate that it is caused by finite size effects of the Bott
index, which exhibits conspicuous variations for distinct
system sizes; the Hall conductivity does not show clear
finite size effects when L ¼ 24, as their difference from
L ¼ 22 is small (we consider a cubic case, Lx ¼ Ly ¼
Lz ¼ L). Further, the Hall conductivity does not exhibit
clear plateaus from finite size effects, probably due to the
smearing out around the gap closing region, as in Weyl
semimetals. The nonzero Hall conductivity and Bott index
suggest the existence of a topological amorphous phase in a
wide range of parameters.
To further identify the topological feature of the system,

we calculate the local DOS defined as ρðE;xÞ ¼
½Pi δðE − EiÞðjΨEi;↑xj2 þ jΨEi;↓xj2Þ�, where Ei is the ith

eigenvalue, ΨEi;σx with σ ¼ ↑;↓ are the corresponding
components of the eigenstate of the system, and ½� � ��
denotes the average over samples. The DOS is defined
as ρðEÞ ¼ P

x ρðE;xÞ=ð2NÞ, which is normalized to 1, i.e.,R
dEρðEÞ ¼ 1. In Figs. 2(c) and 2(d), we illustrate the local

DOS summed over xz:
P

xz ρðE ¼ 0;xÞ for a system Lx ¼
Ly ¼ 20 and Lz ¼ 10 for two typical values of mz, clearly
showing the presence of the surface states localized on the
boundaries [41].
Band properties.—To discriminate the metal or semi-

metal phase from the insulator phase with respect tomz, we
compute the gap, twice the lowest positive energy, using the
Lanczos algorithm, and the DOS for large systems using
the kernel polynomial method (KPM), which expands the
DOS in Chebyshev polynomials to the order Nc [49].
Figures 3(a) and 3(b) illustrate the gap and the DOS at

zero energy ρðE ¼ 0Þ with respect to the mass mz for
distinct system sizes. Clearly, we see that the region with
nonzero Bott index from −2.8≲mz ≲ 9 corresponds to the
gapless region: The gap for −3.2 < mz < 2 is very small
even for a small system size (see the red line for L ¼ 16)
associated with a relative large DOS. ρðE ¼ 0Þ reaches the
maximum at mz ¼ −1.6, where ρðEÞ versus E exhibits a
steep peak at zero energy, as shown in Fig. 3(c), and it
decreases sharply as mz moves away from this point
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FIG. 3. (a) The gap versus mz for different system sizes
calculated via the Lanczos method, with the inset plotting the
same thing in the logarithmic scale. The arrows show the
universal dips. (b) The DOS at zero energy ρð0Þ as a function
of mz (with the logarithmic scale figure shown in the inset)
calculated by the KPM for L ¼ 55 and Nc ¼ 211. (c) The DOS
ρðEÞ versus E for various mz in different phases for L ¼ 55 and
Nc ¼ 211. (Inset) Plots of ρðEÞ versus E when mz ¼ 6 for
L ¼ 55, Nc ¼ 211 (red line), L ¼ 60, Nc ¼ 211 (green line),
and L ¼ 60, Nc ¼ 213 (blue line). (d) The level-spacing ratio
(LSR) rðE ¼ 0Þ (left vertical axis) and inverse participation ratio
(IPR) IðE ¼ 0Þ (right vertical axis) for L ¼ 24 for the states
around zero energy (only the states with negative energy are
considered) computed via the Lanczos algorithm. In all the above
subfigures, samples in a cubic box are considered.
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associated with a developed minimum around zero energy
for ρðEÞ [see Fig. 3(c)]. When 2≲mz ≲ 9, while the
energy gap strongly depends on the system size, its overall
decline with an increasing system size can be observed,
suggesting that this phase may be a semimetal or metal.
Figure 3(b) further shows that ρðE ¼ 0Þ does not vanish in
this region despite being small, implying that they corre-
spond to a metal phase instead of a semimetal one.
Specifically, for mz ¼ 6, ρðEÞ shows a sudden drop around
zero energy [see Fig. 3(c)], but this minimum does not
vanish. To exclude the finite size effect, we calculate ρðEÞ
using a larger system size and Nc and do not find
conspicuous decline of ρðE ¼ 0Þ, as shown in the inset
of Fig. 3(c) [41], in stark contrast to a dramatic drop in a
Weyl semimetal with quasiperiodic disorder [22].
Viewing Fig. 3(a) in the logarithmic system (see the

inset), we clearly see that there appears a universal dip of
the energy gap for different system sizes at mz ¼ 9 and
mz ¼ −2.8. For the former, ρðE ¼ 0Þ exhibits a rapid
decline to zero as mz increases from this point [see the
inset in Fig. 3(b)], suggesting a phase transition to a band
insulator [see ρðEÞ versus E for mz ¼ 10, 14 in Fig. 3(c)].
More interestingly, for the latter, the DOS does not vanish
and does not show clear nonanalytic behavior with respect
to mz. This phase is actually the Anderson localized
insulator (dubbed the amorphous Anderson insulator),
which will be identified by the level-spacing statistics,
the inverse participation ratio (IPR), the conductivity, and
the Fano factor. We note that, with the further decline ofmz,
the system develops into a band insulator [see ρðEÞ versus
E for mz ¼ −7 in Fig. 3(c)], but we cannot identify the
transition point since the DOS becomes very small.
For level statistics, we calculate the adjacent level-spacing

ratio (LSR): rðEÞ ¼ ½(1=ðNE − 2Þ)Pi minðδi; δiþ1Þ=
maxðδi; δiþ1Þ�, where δi ¼ Ei − Ei−1, with Ei being the
ith eigenenergy sorted in an ascending order, and whereP

i is the sum over an energy bin around the energy E,
with NE being the energy levels counted. It is well
known that for localized states, r ≈ 0.39 [50] associated
with the Poisson statistics and for extended states,
r ≈ 0.6 corresponding to the Gaussian unitary ensemble
[51]. Another signature we use is the real space
IPR: IðEÞ¼½ð1=NEÞ

P
i

P
xðjΨEi;↑xj2þjΨEi;↓xj2Þ2�, which

measures how much a state around energy E is spatially
localized. For a completely extended state in an infinitely
large system, it is zero; for a state localized in a single site, it
is 1.
Figure 3(d) shows that, in the topological metal regime,

rðE ¼ 0Þ is around 0.6 and IðE ¼ 0Þ is almost zero; when
mz decreases from−2.8, rðE ¼ 0Þ drops to around 0.39 and
IðE ¼ 0Þ increases sharply, indicating the phase transition
from the extended phase to the localized one. Interestingly,
we also see a similar change of the LSR and the IPR around
mz ∼ 9, implying that the states around zero energy are
localized even though the DOS becomes very small [41].

Conductivity and Fano factor.—To study the quantum
transport properties of the amorphous system, we numeri-
cally calculate the transmission matrix tt† at zero energy by
the nonequilibrium Green’s function method [47,48] and
determine the zero-temperature conductance by the
Landauer formula G ¼ ðe2=hÞTrðtt†Þ [47] and the Fano
factor F ¼ Tr½tt†ð1 − tt†Þ�=Trðtt†Þ [9,52] for a system
connected to two ideal terminals for z < 0 and z > Lz.
Figure 4(a) shows the conductivity σzz ¼ LG=W2 versus

mz, withW and L being the width and length of the system
(we here consider a cubic box geometry, i.e., W ¼ L). The
conductivity is nonzero in the region with nonzero Bott
index from −2.8≲mz ≲ 9, showing a diffusive metal
behavior; as for a pseudoballistic semimetal, the conduc-
tivity vanishes [9]. The conductivity drops to zero at around
mz ∼ −2.8 and at around mz ∼ 9 when mz moves away to
the left and right regions, respectively. The former corre-
sponds to the transition into the Anderson insulator phase,
the latter the band insulator phase with vanishing DOS. The
diffusive metal behavior is also reflected in the Fano factor
that takes the value around F ¼ 1=3 [52] [see Fig. 4(b)].
The transition into the insulator phase is signaled by the
steep rise of the Fano factor to 1 due to the Poisson process.
We do not find any discernible region where the Fano factor
takes the value of F0 ¼ 1=3þ 1=ð6 ln 2Þ for Weyl semi-
metals without disorder [9], further suggesting the absence
of the semimetal phase [41].
Experimental realization.—Topological amorphous met-

als may be realized in classical systems, artificial quantum
systems, and solid-state glass materials. Here, we propose
an experimental scheme to engineer a Laplacian (acting as a
Hamiltonian) with electric circuits, which takes the form of
our Hamiltonian [41]. The surface states can be observed
by measuring the two-point impedance. Recently, a number
of topological phases, such as the Su-Schrieffer-Heeger
model [53], Weyl semimetals [54], and higher topological
insulators [55] have been experimentally observed with
electric circuits. In addition, recent development of tech-
nology has allowed us to place Rydberg atoms in arbitrary
geometry using optical tweezers [31,32], which makes it
possible to realize our model in this system.
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FIG. 4. (a) Conductivity σzz in units of e2=h and (b) Fano factor
versus mz for L ¼ 25 in a cubic box. (Inset) Plots of the
conductivity in the logarithmic scale, showing its steep drops
across the phase transitions. The dashed lines correspond to
F ¼ 1=3 and F ¼ 1=3þ 1=ð6 ln 2Þ, respectively.
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In summary, we discover a topological amorphous metal
phase in 3D amorphous systems. We identify its topologi-
cal feature by calculating the Bott index, the Hall conduc-
tivity, and the surface states. Through further study of its
band properties including the energy gap, DOS, LSR, and
IPR and the quantum transport properties, we find that the
topological phase exhibits a diffusive metal behavior. We
further predict the phase transition from the topological
metal phase to the Anderson insulator phase and the band
insulator phase with respect to a system parameter. Our
results open a new avenue for studying topological gapless
phenomena in amorphous systems. These new phenomena
might be observed in various amorphous materials, such as
engineered classical or atomic systems and glass materials.
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[31] D. Barredo, S. de Léséleuc, V. Lienhard, T. Lahaye, and A.
Browaeys, Science 354, 1021 (2016).

[32] M. Endres, H. Bernien, A. Keesling, H. Levine, E. R.
Anschuetz, A. Krajenbrink, C. Senko, V. Vuletic, M.
Greiner, and M. D. Lukin, Science 354, 1024 (2016).

[33] N. P. Mitchell, L. M. Nash, D. Hexner, A. M. Turner, and
W. T. M. Irvine, Nat. Phys. 14, 380 (2018).

[34] A. Agarwala and V. B. Shenoy, Phys. Rev. Lett. 118,
236402 (2017).

[35] S. Mansha and Y. D. Chong, Phys. Rev. B 96, 121405(R)
(2017).

[36] M. Xiao and S. Fan, Phys. Rev. B 96, 100202(R) (2017).
[37] C. Bourne and E. Prodan, J. Phys. A 51, 235202 (2018).
[38] K. Pöyhönen, I. Sahlberg, A. Westström, and T. Ojanen,

Nat. Commun. 9, 2103 (2018).
[39] E. L. Minarelli, K. Pöyhönen, G. A. R. van Dalum, T.

Ojanen, and L. Fritz, Phys. Rev. B 99, 165413 (2019).
[40] G.-W. Chern, Europhys. Lett. 126, 37002 (2019).
[41] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.123.076401, which in-
cludes Refs. [42–44], for more details on the proof of the
equivalence between the Bott index and the Hall conduc-
tivity, the Griffiths region, the surface states, the discussion
on semimetal phases, the mobility edges, the stability
against the on-site disorder, and the experimental realization
in electric circuits.

[42] Y. Ge and M. Rigol, Phys. Rev. A 96, 023610 (2017).

PHYSICAL REVIEW LETTERS 123, 076401 (2019)

076401-5

https://doi.org/10.1038/nmat4788
https://doi.org/10.1038/nmat4787
https://doi.org/10.1038/nmat4787
https://doi.org/10.1103/RevModPhys.90.015001
https://doi.org/10.1103/RevModPhys.90.015001
https://doi.org/10.1007/s11467-019-0896-1
https://doi.org/10.1103/PhysRevB.83.205101
https://doi.org/10.1103/PhysRevB.84.075129
https://doi.org/10.1103/PhysRevB.84.075129
https://doi.org/10.1103/PhysRevLett.107.127205
https://doi.org/10.1103/PhysRevLett.107.127205
https://doi.org/10.1103/PhysRevLett.107.186806
https://doi.org/10.1103/PhysRevLett.107.186806
https://doi.org/10.1103/PhysRevLett.113.026602
https://doi.org/10.1103/PhysRevLett.114.225301
https://doi.org/10.1103/PhysRevLett.114.016806
https://doi.org/10.1103/PhysRevX.5.011029
https://doi.org/10.1103/PhysRevLett.115.156603
https://doi.org/10.1103/PhysRevLett.115.156603
https://doi.org/10.1103/PhysRevLett.115.246603
https://doi.org/10.1126/science.aaa9297
https://doi.org/10.1103/PhysRevX.5.031013
https://doi.org/10.1103/PhysRevX.5.031013
https://doi.org/10.1126/science.aaa9273
https://doi.org/10.1038/srep23741
https://doi.org/10.1103/PhysRevX.6.021042
https://doi.org/10.1103/PhysRevX.6.021042
https://doi.org/10.1103/PhysRevLett.117.216601
https://doi.org/10.1103/PhysRevLett.117.216601
https://doi.org/10.1103/PhysRevA.94.053619
https://doi.org/10.1103/PhysRevLett.120.207604
https://doi.org/10.1146/annurev-conmatphys-033117-054037
https://doi.org/10.1146/annurev-conmatphys-033117-054037
https://doi.org/10.1038/nature15768
https://doi.org/10.1038/nature15768
https://doi.org/10.1038/nphys3871
https://doi.org/10.1038/nmat4685
https://doi.org/10.1103/PhysRevLett.115.265304
https://doi.org/10.1103/PhysRevLett.115.265304
https://doi.org/10.1126/science.aaf5037
https://doi.org/10.1126/science.aaf5037
https://doi.org/10.1038/nature22390
https://doi.org/10.1038/nature22390
https://doi.org/10.1126/science.aah3778
https://doi.org/10.1126/science.aah3752
https://doi.org/10.1038/s41567-017-0024-5
https://doi.org/10.1103/PhysRevLett.118.236402
https://doi.org/10.1103/PhysRevLett.118.236402
https://doi.org/10.1103/PhysRevB.96.121405
https://doi.org/10.1103/PhysRevB.96.121405
https://doi.org/10.1103/PhysRevB.96.100202
https://doi.org/10.1088/1751-8121/aac093
https://doi.org/10.1038/s41467-018-04532-x
https://doi.org/10.1103/PhysRevB.99.165413
https://doi.org/10.1209/0295-5075/126/37002
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.076401
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.076401
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.076401
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.076401
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.076401
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.076401
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.076401
https://doi.org/10.1103/PhysRevA.96.023610


[43] T. Hofmann, T. Helbig, C. H. Lee, M. Greiter, and R.
Thomale, Phys. Rev. Lett. 122, 247702 (2019).

[44] W.-K. Chen, The Circuits and Filters Handbook, 3rd ed.
(CRC Press, Boca Raton, 2009).

[45] T. A. Loring and M. B. Hastings, Europhys. Lett. 92, 67004
(2010).

[46] Y.-B. Yang, L.-M. Duan, and Y. Xu, Phys. Rev. B 98,
165128 (2018).

[47] S. Datta, Electronic Transport in Mesoscopic Systems
(Cambridge University Press, Cambridge, England, 1997).

[48] Y. Xing, Q.-F. Sun, and J. Wang, Phys. Rev. B 75, 075324
(2007).

[49] A. Weiße, G. Wellein, A. Alvermann, and H. Fehske, Rev.
Mod. Phys. 78, 275 (2006).

[50] V. Oganesyan and D. A. Huse, Phys. Rev. B 75, 155111
(2007).

[51] L. D’Alessio and M. Rigol, Phys. Rev. X 4, 041048 (2014).
[52] C. W. J. Beenakker and M. Büttiker, Phys. Rev. B 46, 1889

(R) (1992).
[53] C. H. Lee, S. Imhof, C. Berger, F. Bayer, J. Brehm, L. W.

Molenkamp, T. Kiessling, and R. Thomale, Commun. Phys.
1, 39 (2018).

[54] Y. Lu, N. Jia, L. Su, C. Owens, G. Juzeli-unas,
D. I. Schuster, and J. Simon, Phys. Rev. B 99, 020302(R)
(2019).

[55] S. Imhof, C. Berger, F. Bayer, J. Brehm, L.W. Molenkamp,
T. Kiessling, F. Schindler, C. H. Lee, M. Greiter, T. Neupert,
and R. Thomale, Nat. Phys. 14, 925 (2018).

PHYSICAL REVIEW LETTERS 123, 076401 (2019)

076401-6

https://doi.org/10.1103/PhysRevLett.122.247702
https://doi.org/10.1209/0295-5075/92/67004
https://doi.org/10.1209/0295-5075/92/67004
https://doi.org/10.1103/PhysRevB.98.165128
https://doi.org/10.1103/PhysRevB.98.165128
https://doi.org/10.1103/PhysRevB.75.075324
https://doi.org/10.1103/PhysRevB.75.075324
https://doi.org/10.1103/RevModPhys.78.275
https://doi.org/10.1103/RevModPhys.78.275
https://doi.org/10.1103/PhysRevB.75.155111
https://doi.org/10.1103/PhysRevB.75.155111
https://doi.org/10.1103/PhysRevX.4.041048
https://doi.org/10.1103/PhysRevB.46.1889
https://doi.org/10.1103/PhysRevB.46.1889
https://doi.org/10.1038/s42005-018-0035-2
https://doi.org/10.1038/s42005-018-0035-2
https://doi.org/10.1103/PhysRevB.99.020302
https://doi.org/10.1103/PhysRevB.99.020302
https://doi.org/10.1038/s41567-018-0246-1

