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The miscibility condition for a binary mixture of two interacting Bose-Einstein condensates is shown to
be deeply affected by interaction driven thermal fluctuations. These give rise to a first order phase transition
to a demixed phase with full spatial separation of the two condensates, even if the mixture is miscible at
zero temperature. Explicit predictions for the isothermal compressibility, the spin susceptibility, and the
phase transition temperature TM are obtained in the framework of Popov theory, which properly includes
beyond mean-field quantum and thermal fluctuations in both the spin and density channels. For a mixture
of two sodium condensates occupying the hyperfine states jF ¼ 1i; jmF ¼ 1i and jF ¼ 1; mF ¼ −1i,
respectively, TM is predicted to occur at about 0.7 times the usual BEC critical temperature.
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Introduction.—The miscibility of liquids and gases, and
in particular its temperature dependence, is a topic of high
relevance in the study of classical fluids [1]. For quantum
mixtures, this question was addressed a long time ago in
the context of 3He-4He liquids [2], and more recently for
mixtures of quantum gases [3,4]. In particular, weakly
interacting binary Bose gases occupying two different
hyperfine states are the simplest, yet interesting examples
of quantum mixtures, for which the problem of miscibility
has been intensively investigated, both experimentally
[5–9] and theoretically [10–21]. The theoretical studies
have revealed that, in the zero temperature mean field
regime, the mixture is stable against phase separation if
the inequality g212 < g11g22 holds, where gij is the coupling
constant for the intraspecies (g11 and g22) and interspecies
(g12) interactions [3,10–14]. At finite temperature, theo-
retical studies have mainly focused on harmonically
trapped systems, by means of the Hartree-Fock [15–17],
Zaremba-Nikuni-Griffin [18] and Hartree-Fock-Bogoliubov
[19–21] theories. Although they differ in the treatment of
the intraspecies interaction, all the above approaches treat
the interspecies coupling at the mean-field level, thereby
providing an inaccurate description of the thermal fluctua-
tions associated with the spin degree of freedom.
In this Letter, we study the case of a uniform bosonic

mixture occupying two different hyperfine states, satisfying
the miscibility condition at zero temperature. Contrary to
intuitive arguments based on entropy considerations, we
predict the occurrence of a peculiarmagnetic phase transition
at finite temperature, characterized by the remarkable space
separation of the condensate components of the two Bose
gases.Our theoretical approach is basedon thegeneralization
of Popov theory [22–24] applied to a mixture of two
interacting Bose gases. This theory properly accounts for
quantum and thermal fluctuations in both the density and

spin channels, beyond the mean-field approach. Differently
from the Hartree-Fock approximation, which is shown to
predict a magnetic phase transition as a consequence of the
negativevalue of the spin susceptibility at a finite temperature
below the Bose-Einstein condensation (BEC) critical point,
the phase transition predicted by Popov theory is not related
to theoccurrenceof a dynamic instability and has a first-order
nature arising from an energetic instability. If the interspecies
interaction is close to, but still smaller than the intraspecies
value (0 < δg ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

g11g22
p − g12 ≪

ffiffiffiffiffiffiffiffiffiffiffiffi
g11g22

p
), the predicted

magnetic transition is found to occur significantly below the
BEC critical temperature.
Compressibility and susceptibility.—We start from the

investigation of the isothermal compressibility κT and
magnetic susceptibility κM, related, respectively, to the
density and spin response of the system [25]. For mixtures
of two gases, the mixed state is dynamically stable against
density and spin fluctuations if κT and κM are positive
[26,27]. The two quantities are defined through the
Helmoltz free energy F per unit volume V according to:

κT ¼
�∂2F=V

∂n2
�−1

; κM ¼
�∂2F=V

∂m2

�−1

m¼0

; ð1Þ

with n ¼ n1 þ n2 the total density of particles and m ¼
n1 − n2 the magnetization density. The simplest and widely
used theory to investigate the thermodynamic behavior of
binary Bose gases is the Hartree-Fock (HF) model [15–17].
For mixtures where both components are in the condensate
phase, the HF free energy takes the form:

FHF

V
¼ g
2
ðn21 þ n22Þ þ g12n1n2

þ g
ζð3=2Þ2

λ6T
þ 1

βV

X
i

X
k

ln ð1− e−βðεkþgni;0ÞÞ; ð2Þ
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with ζðsÞ and λT as the Riemann zeta function and thermal
de Broglie wavelength, respectively, and we have assumed
g11 ¼ g22 ¼ g. In Eq. (2), the first line corresponds to the
T ¼ 0 mean-field contribution, while the second line
accounts for the thermal contribution of the single-particle
excitations, where εk ¼ ℏ2k2=ð2MÞ is the particle kinetic
energy and ni;0 ¼ ni − ζð3=2Þ=λ3T is the Bose condensed
particles density holding to the lowest order in the
interaction. The HF model predicts BEC to occur when
ni;0 ¼ 0, corresponding to the critical temperature
kBTi;BEC ¼ 2πℏ2=M½ni=ζð3=2Þ�2=3. At zero temperature,
one verifies that Eqs. (1) and (2) yield κT;M ¼ 2=ðg� g12Þ,
so that phase separation occurs for g ≤ g12. For example, in
the case of a mixture of 23Na atoms occupying the hyperfine
states jF ¼ 1; mF ¼ �1i, one has δg=g ¼ 0.07 yielding
an increase of a factor ∼14 of the T ¼ 0 value of the
spin polarizability with respect to the value obtained in the
absence of interspecies interactions. The huge increase of
the spin susceptibility has been recently demonstrated
experimentally in the case of a harmonically trapped
mixture of sodium atoms [28,29].
In Fig. 1 we report the temperature dependence of the

isothermal compressibility and of the spin susceptibility in
the case of the sodium mixture discussed above, in the

unpolarized configuration n1 ¼ n2 ¼ n=2. Remarkably,
the susceptibility predicted by the HF theory shown in
panel (b) exhibits a divergent behavior at T ≃ 0.5TBEC,
therefore signaling the onset of a magnetic dynamic
instability. The origin of this instability can be understood
if one writes the analytical expression for the spin suscep-
tibility, obtained by expanding the Bose distribution func-
tion in the high-temperature regime kBT ≫ gn:

2ðκHFM Þ−1 ≃ δg − g3=2
ffiffiffi
π

p
λ3T

ffiffiffiffiffi
β

n0

s
: ð3Þ

The onset of the dynamical instability in theHFdescription is
due to the last g3=2 term in Eq. (3), arising from interaction
driven thermal fluctuations. As the temperature increases,
beyond mean-field effects are enhanced, eventually leading
to a divergent behavior of κHFM at finite temperature. These
results for the dynamical instability are consistent with the
earlier work of Ref. [17], in which the author calculates the
grand-canonical potential in the HF approximation, and
predicts the occurrence of a phase separation of BEC
components caused by thermal effects, even when δg > 0.
As explicitly shown in Eq. (2), the HF theory accounts

for the interspecies interaction only to the lowest order,
linear in g12. Since the divergence of the HF spin suscep-
tibility arises from terms beyond the linear order in the
intraspecies interaction g, it is natural to ask how this
instability is modified by the inclusion of higher order
terms in g12. In order to answer this question, we develop
the Popov theory for a mixture of two condensates, starting
from a model Hamiltonian which treats in a consistent way
both inter and intraspecies interactions. The associated
grand-canonical Hamiltonian K can be diagonalized by
means of Bogoliubov transformations, as well as proper
renormalizations of the coupling constants [30]. The details
of the derivation will be given in a subsequent paper, and
here we only provide the final result:

K ¼ Ω0 þ
X
k≠0

ðEþ
kα

†
kαk þ E−

kβ
†
kβkÞ; ð4Þ

where α†k and β
†
k are, respectively, the creation operators for

the quasiparticles in the density and spin channels obeying
Bose statistics, and Ω0 is the thermodynamic potential of
the vacuum of these quasiparticles. The excitation spectrum
of the system reads E�

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2k þ 2Λ�εk

p
where,

Λ� ¼ 1

2

�
gn0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðg2 − g212Þm2

0 þ g212n
2
0

q �
; ð5Þ

are the Bogoliubov sound velocities, with n0 ¼ n1;0 þ n2;0
andm0 ¼ n1;0 − n2;0. Eventually one obtains the expression
for the free energy using the thermodynamic relation
F ¼ ΩþP

iμini, with Ω ¼ β−1 ln ðTre−βKÞ and μi the

FIG. 1. Isothermal compressibility (a) and spin susceptibility
(b) Eq. (1) for binary mixtures of Bose gases, with interaction
parameters gn=ðkBTBECÞ ¼ 0.1 and δg=g ¼ 0.07. The blue solid
and the red dashed lines are the predictions of HF theory [Eq. (2)]
and Popov theory [Eq. (6)], respectively. Both quantities are
normalized to the mean-field T ¼ 0 values, κT;MðT ¼ 0Þ ¼
2=ðg� g12Þ.
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chemical potential for the ith component evaluated from the
saddle point equation ∂Ω=∂ni;0 ¼ 0. In the BEC mixed
phase, where both components are condensed, one finds:

F
V
¼ g

2
ðn21 þ n22Þ þ g12n1n2

þ g
ζð3=2Þ2

λ6T
þ 1

βV

X
�

X
k

ln ð1 − e−βE
�
k Þ

þ
�

M
2πℏ2

�
3=2 4

15
ffiffiffi
π

p
X
�
ð2Λ�Þ5=2: ð6Þ

In this expression, the first two lines are similar to the ones of
HF theory in Eq. (2), the thermal contribution of single
particles being now replaced by that of quasiparticles. As for
the last line ofEq. (6) it corresponds to the contribution arising
from quantum fluctuations. At T ¼ 0 this term reduces to
the Lee-Huang-Yang energy functional, which was used in
Ref. [31] to predict the existence of self-bound quantum
droplets, as a result of the competition between mean-field
attraction and beyond mean-field repulsion [32,33].
Results for the response functions Eq. (1) are shown as

red dashed lines in Fig. 1. In panel (a), the isothermal
compressibility is found to lie close to the HF prediction in
a wide range of temperatures below TBEC. However as
shown in panel (b), we find that the spin susceptibility
predicted by the Popov theory deviates strongly from the
HF calculation. For T > TBEC, Popov theory reduces to the
HF theory. In order to understand the major differences
provided by the two approaches, we derive the high-
temperature analytical expression of the spin susceptibility,
now calculated within the Popov theory Eq. (6). We find:

2ðκMÞ−1 ≃ δg − g3=2
δg
g12

2
ffiffiffi
π

p
λ3T

ffiffiffiffiffi
β

n0

s

×

"�
1þ g12

g

�
3=2

−
�
1þ g12

g

� ffiffiffiffiffi
δg
g

s #
: ð7Þ

In contrast to the HF prediction Eq. (3), the Popov approach
gives rise to terms proportional to δg also for the beyond
mean-field terms [second term in the right-hand side of
Eq. (7)]. A careful analysis of the grand-canonical
Hamiltonian in Eq. (4) reveals that the emergence of
such beyond mean-field terms in g12 is due to the correct
treatment of the two-component anomalous densities
hψ†

iψ jii≠j and hψ iψ jii≠j, with ψ i the bosonic field operator
for the particles in the component i. These anomalous
averages are natural extensions of the single component
anomalous density hψ iψ ii of Bogoliubov theory [30],
and are the consequences of presence of Bose-Eistein
condensation in both components. The inclusion of such
terms in the grand-canonical Hamiltonian Eq. (4) is crucial
to provide a proper description of both spin and density

fluctuations. It is worth noticing that besides the well-
known solution δg ¼ 0, Eq. (7) possesses a second root,
leading to a dynamical instability at finite temperature
even if δg > 0. In Fig. 1(b) the divergence of κM is found to
occur at T ∼ 0.9TBEC. However at this temperature the
system is already phase separated, as we discuss in the next
section.
Magnetic phase separation.—In the previous section,

we have established the region where the mixed binary
configuration is dynamically stable. We now turn to the
investigation of a possible energetic instability, associated
with the emergence of an energetically favorable phase
separated state. Let us consider an unpolarized Bose
mixture, miscible at zero temperature (δg > 0). Since we
consider a uniform system, the mixture is prone to separate
into two domains (A, B) of equal volume V=2, conserving
the total density nA ¼ nB ¼ n, but with opposite magneti-
zation mA ¼ −mB ¼ m. The two domains are in equilib-
rium when both the pressure (PA ¼ PB) and the chemical
potential (μAi ¼ μBi ) equilibrium conditions are satisfied.
While the equilibrium condition for the pressure is auto-
matically satisfied for the symmetric configuration consid-
ered here, the chemical potential equilibrium is found to be
fulfilled only if, in each domain, one of the two components
is in the normal phase. For such a configuration the Popov
free energy in each domain is given by:

F
V
¼ g

2

�
n21 þ 2n22 þ

ζð3=2Þ2
λ6T

�
þ g12n1n2 þ μIBG2 n2

þ
�

M
2πℏ2

�
3=2 4

15
ffiffiffi
π

p ð2gn1;0Þ5=2

þ 1

βV

X
k

ln ð1 − e−βEkÞ

þ 1

βV

X
k

ln ð1 − e−βðεk−μIBG2
ÞÞ; ð8Þ

where we chose n2 to be the minority component in the
normal phase. The ideal Bose gas chemical potential μIBG2 is
defined through the relationship n2 ¼ g3=2ðeβμIBG2 Þ=λ3T , with
gpðzÞ the usual Bose special function [3]. As for the majority
component in the condensed phase, it is now described by

the quasiparticle energy Ek ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2k þ 2εkgn1;0

q
.

Figure 2 shows the calculated free energy as a function
of the magnetization density, for different values of temper-
ature. At low temperature, the free energy is a monotonically
increasing function (see blue solid line), with a unique
minimum at zero magnetization, corresponding to the mixed
state. At a given temperature, hereafter called T�, a second
minimum starts to develop in the region where the minority
component is purely thermal, m > n − 2ζð3=2Þ=λ3T (red
dashed line). As already stressed, the emergence of such
metastable state corresponds to the fulfillment of the
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chemical potential equilibrium between the two domains.
An analytical expression for the temperature T� can be
obtained from Eq. (8) by employing the high temperature
kBT ≫ gn expansion for the Bose distribution function:

T�

TBEC
≃
δg
g
ζð3=2Þffiffiffiffiffiffi

2π
p

ffiffiffiffiffiffiffiffiffiffi
TBEC

gn

s
: ð9Þ

By further increasing the temperature the energy of the
metastable state decreases, eventually reaching the same
energy as the unpolarized state, therefore signaling the onset
of a first order phase transition. Hereafter we use the notation
TM to denote this magnetic phase transition temperature,
above which the mixed state is energetically unstable with
respect to the phase separated state (green dotted line in
Fig. 2). The new equilibrium phase predicted by Popov
theory is hence characterized by a full space separation of
the Bose-Einstein condensed components of the two atomic
species, their thermal components remaining instead mixed,
with a finite magnetization. In Fig. 3 we show the phase
diagram of the two-component Bose mixture, by plotting
the characteristic temperature T�, providing the onset of a
minimum in the free energy with m ≠ 0 and the phase
transition temperature TM as a function of δg=g. For the
sodium mixture where δg=g ¼ 0.07, we find that the phase-
separated state appears as ametastable state atT� ¼ 0.36TBEC
while the phase transition occurs at TM ¼ 0.71TBEC. We
briefly note that as δg=g → 0, T� tends to a finite value
(≃0.1TBEC), as a consequence of quantum fluctuations, in
contrast with Eq. (9) which only holds if T� ≫ gn=kB.
We also find that the phase separated state disappears slightly
above the critical temperature TBEC. At this temperature, the
mixture becomes again miscible with both components in the
normal phase.

Finally, let us briefly discuss the effects of inhomoge-
neity on the phase separation. So far, all the experiments on
binary Bose gases at finite temperature have been per-
formed in presence of harmonic potentials (see for example
Ref. [29]), and the phase transition discussed in this section
has never been observed. This can be understood from the
suppression of feedback between thermal and condensate
atoms in a trapped gas. Indeed, in a trap the condensate
atoms occupy the center of the cloud, while the thermal
ones are spread out, and consequently the overlap between
the two components is greatly reduced. From the afore-
mentioned free energy analysis, we have verified that by
neglecting the coupling between the condensate and the
thermal atoms, the phase separation does not occur for any
value of T [34].
Conclusion.—By developing a beyond mean-field theory,

which properly includes thermal fluctuation effects in
both the density and spin channels, we have investigated
the thermodynamic behavior of a uniform binary mixture
of weakly interacting Bose gases and predicted the
occurrence of a first order magnetic transition. The phase
transition is characterized by the space separation of the
two condensates and the formation of polarized domains.
Our analysis has revealed that the corresponding phase
separation can occur, even if the inequality g12 < g is
satisfied (and hence the mixture is miscible at zero
temperature) as a consequence of interaction induced
thermal fluctuations and of the coupling between the
condensate and the thermal atoms. Recently, boxlike
potentials providing uniform trapping have become avail-
able for both Bose [35] and Fermi [36] gases. Thus, the
experimental possibility of observing the predicted mag-
netic phase transition is a realistic option. Important open
issues concern the propagation of sound in these polarized
domains, the possible emergence of a similar magnetic
phase transition in two dimensions, the relevance of

FIG. 2. Difference of free energies between the miscible state
(m ¼ 0) and the phase-separated state described in the main
text, for gn=ðkBTBECÞ ¼ 0.1 and δg=g ¼ 0.07. Blue solid line:
T < T�, red dashed line: T� < T < TM, green dotted line
T > TM. The vertical lines indicate the critical magnetization
m ¼ n − 2ζð3=2Þ=λ3T above which the minority component is
purely thermal.

FIG. 3. Phase diagram for binary condensates with gn=
ðkBTBECÞ ¼ 0.1. The blue solid and the red dashed lines are
the phase transition temperature TM , and characteristic temper-
ature T�, respectively. The gray area corresponds to the regime of
phase separation.
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finite-size effects caused by the trapping and the structure
of the interface between different domains.
During the final preparation of this Letter, we become

aware of the work of Ref. [37], where beyond mean-field
effects are included by means of large-N expansion
techniques. The resulting predictions for the behavior of
spin susceptibility are consistent with our findings based on
Popov theory.
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