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Using recent high-precision measurements of electric dipole matrix elements of atomic cesium, we make
an improved determination of the scalar (α) and vector (β) polarizabilities of the cesium 6s2S1=2 → 7s2S1=2
transition calculated through a sum-over-states method. We report values of α ¼ −268.82ð30Þa30 and β ¼
27.139ð42Þa30 with the highest precision to date. We find a discrepancy between our value of β and the past
preferred value, resulting in a significant shift in the value of the weak charge Qw of the cesium nucleus.
Future work to resolve the differences in the polarizability will be critical for interpretation of parity
nonconservation measurements in cesium, which have implications for physics beyond the standard model.
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Precision measurements of weak optical interactions in
atoms can provide a sensitive means of probing the weak
force between nucleons and electrons at low momentum
transfer [1,2]. The extent to which atomic parity nonconser-
vation (PNC) measurements agree with standard model
predictions canprovide constraints onconjectures of “beyond
standard model” physics, which are based on new additional
interactions involving, for example, a massive Z0 boson
[3–7], a light boson [8–10], or axionlike particles [11,12]
or searches of dark energy [13–16]. Recent theoretical
searches for darkmatter [17–19] are based on a hypothesized
light dark boson that decays primarily to dark matter, but that
also interacts weakly with standard model matter.
The most precise determination of the weak charge

through atomic PNC measurements to date was carried
out in atomic cesium. This determination is based on a
precise measurement of the ratio ImðEPNCÞ=β byWood et al.
[20],where ImðEPNCÞ is the electric dipole transitionmoment
for the 6s2S1=2 → 7s2S1=2 transition induced by the weak
force interaction, and β is the vector polarizability for the
transition. The weak charge Qw is determined then as the
product of ImðEPNCÞ=β, the polarizability β, and a propor-
tionality factor kPNC ≡Qw=ImðEPNCÞ, which must be deter-
mined through difficult atomic structure calculations
[3–5,21–30]. A new determination of ImðEPNCÞ=β is cur-
rently under development in our laboratory, and Derevianko
has announced plans to undertake a new calculation of kPNC
[31]. In this Letter, we report a new determination of the
vector polarizability β, which is of higher precision than, but
differs from, the previously accepted value [32,33].
Since 2000, the most precise determination of β has been

based upon a theoretical value for the hyperfine-changing

magnetic dipole matrix elementM1hf [32], and a laboratory
determination of the ratioM1hf=β [33]. With a precision of
0.19%, this value of β has been preferred over the value
determined from a calculation of the scalar polarizability
α using a sum-over-states approach [23,28,34,35], com-
bined with a measurement of the ratio α=β [36]. The
latter method requires precise measurements or theoretical
values for the reduced electric dipole (E1) matrix elements
hnpJkrkms1=2i with m ¼ 6 or 7, n ≥ 6, and J ¼ 1=2 or
3=2. Many of these matrix elements were measured to great
precision in the past thirty years [35,37–51], and in the last
three years, our group has undertaken and completed high-
precision measurements of the remainder of these eight
matrix elements [52–54].
We first present a new determination of α through a sum-

over-states method [23,35],
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where hnpJkrkms1=2i are the E1 transition matrix ele-
ments, Ems and EnpJ

are state energies, and J ¼ 1=2 or 3=2
is the electronic angular momentum of the state.
We show the E1 matrix elements h7s1=2krknpJi and

hnpJkrk6s1=2i, and state energies EnpJ
for states with

principal quantum number 6 ≤ n ≤ 12 used for our
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sum-over-states calculation in Table I. In earlier calculations
of α [34,35], the terms contributing the most to the 0.4%
uncertainty in α¼269.7ð11Þa30 were the h7s1=2krk6pJi and
h7pJkrk6s1=2i matrix elements whose uncertainties at that
time were 0.5% and 0.6%, respectively. (The numbers in
brackets following the value denote the 1σ uncertainty in the
least significant digits.) In the following paragraphs, we
summarize the recent contributions towards these matrix
elements, which enable us to calculate a more precise
value for α.
6s-6p. The values for the h6s1=2krk6pJimatrix elements

have been measured precisely in a variety of experiments.
These include fast-beam laser [38,41], time-resolved fluo-
rescence [39], ultrafast pump-probe laser [50], photoasso-
ciation [43,45,47], ground-state polarizability [44], and
atom interferometry [51]. We take the weighted average
of these measurements, to obtain a precision of ∼0.035%
for these matrix elements.
7s-6p. In 2017, we used an asynchronous gated detec-

tion technique with a single-photon detector to measure
the lifetime of the 7s state to a precision of 0.14% [52].
We combine this high-precision lifetime measurement
with a measurement of the ratio of dipole matrix ele-
ments h7s1=2krk6p3=2i=h7s1=2krk6p1=2i [53] in order to

determine the individual matrix elements to a precision of
<0.1%. This ratio measurement was based upon measure-
ments of the influence of laser polarization on the two-
photon 6s → 7s transition rate.
7s-7p. We derive new values for the 7s − 7p matrix

elements from a dc Stark shift Δα6s7s measurement of
the 6s → 7s transition [42], and our high-precision
determinations of the 7s − 6p matrix elements. This is
the same method as used in Ref. [34]. The static polar-
izability α7s depends primarily on the 7s − 7p and 7s − 6p
values. We use Δα6s7s [42] and high-precision measure-
ments of the ground-state static polarizability α6s [44,51]
to calculate the static polarizability α7s of the 7s state.We also
use theoretical calculations of the ratio of 7s − 7pJ matrix
elements R7s7p¼jh7s1=2krk7p3=2i=h7s1=2krk7p1=2ij¼
1.3892ð3Þ [34] and for the 7s − np matrix elements
where n > 7 [55]. The results of our determination are
h7s1=2krk7p1=2i ¼ 10.325ð5Þa0 and h7s1=2krk7p3=2i ¼
14.344ð7Þa0, an improvement in precision from 0.15% in
[34] to 0.05% as presented here.
6s-7p. Most recently, we have completed a comprehen-

sive study of the 6s → 7p3=2 (λ ¼ 456 nm) and 6s → 7p1=2

(λ ¼ 459 nm) line absorption strengths to determine
the transition matrix elements h6s1=2krk7p3=2i and

TABLE I. E1 matrix elements, eigenstate energies, and contributions to the scalar polarizability α. This table shows our sum-over-
states calculation, as given in Eq. (1), of the scalar polarizability α. E1 elements for n ¼ 6 and 7 are experimental values, as discussed in
the text.

n dða0Þ δd (%) δαða30Þ dða0Þ δd (%) δαða30Þ Enp1=2
(cm−1Þ αða30Þ δαða30Þ

h7s1=2krknp1=2i hnp1=2krk6s1=2i
6 −4.249a 0.094 0.031 4.5057b 0.035 0.011 11 178.27 −32.54 0.03
7 10.325c 0.05 0.019 0.2781d 0.16 0.060 21 765.35 −37.35 0.06

8 0.914 2.9 0.016 0.092 11 0.061 25 708.84 −0.55 0.06
9 0.349 2.9 0.002 0.043 16 0.013 27 637.00 −0.08 0.01
10 0.191 3.1 0.001 0.025 20 0.005 28 726.81 −0.02 0.00
11 0.125 3.5 0.000 0.016 27 0.002 29 403.42 −0.01 0.00
12 0.09 3.9 0.000 0.012 28 0.001 29 852.68 −0.00 0.00

h7s1=2krknp3=2i hnp3=2krk6s1=2i
6 −6.489a 0.077 0.072 −6.3398b 0.035 0.033 11 732.31 −92.93 0.08
7 14.344c 0.05 0.051 −0.5742d 0.10 0.101 21 946.39 −102.05 0.11

8 1.62 2.2 0.053 −0.232 6.2 0.151 25 791.51 −2.43 0.16
9 0.68 2.1 0.010 −0.130 7.4 0.035 27 681.68 −0.47 0.04
10 0.396 2.2 0.004 −0.086 8.3 0.014 28 753.68 −0.17 0.01
11 0.270 2.4 0.002 −0.063 8.9 0.007 29 420.82 −0.08 0.01
12 0.201 3.7 0.002 −0.049 9.5 0.004 29 864.54 −0.04 0.00

αn>12 ¼ −0.30 0.15
αvc ¼ þ0.2 0.1
α ¼ −268.82 0.30

aReferences [52,53],
bReferences [38–41,43–47,50,51],
cReference [42] and this work,
dReference [54]. Theory values of E1 elements (8 ≤ n ≤ 12) are from Ref. [55] including the Supplemental Material. State energies
(rounded here to two decimal places after the point) are found in NIST tables [56].

PHYSICAL REVIEW LETTERS 123, 073002 (2019)

073002-2



h6s1=2krk7p1=2i [54]. These comparative studies yield the
ratios of matrix elements h6s1=2krk6p1=2i=h6s1=2krk7p3=2i
and h6s1=2krk7p3=2i=h6s1=2krk7p1=2i. Then by using the
very precise value of h6s1=2krk6p1=2i [38–41,43–45,47,
50,51], we obtain a value of h6s1=2krk7p3=2i with 0.10%
uncertainty, and of h6s1=2krk7p1=2iwith 0.16%uncertainty.
In Fig. 1 we show a plot that illustrates the current state

of theory and experiment for these eight matrix elements.
(This plot is an updated version of a plot that first appeared
as Fig. 2 of [3].) Specifically, this plot shows the exper-
imental uncertainties and the discrepancies between theory
and experiment for selected transition matrix elements. The
error bars indicate the experimental uncertainties, while
markers show the difference between experiment and three
recent theoretical works, including Ref. [34] (∘), [25,28]
(�), and [4] (×). (Deviation > 0 indicates the theoretical
value is greater than the experimental value.) We observe
that there is good agreement between experiment and
theory to the ∼0.2% level for most of these terms. All
of the matrix elements hns1=2krkmpJi for n,m ¼ 6, 7 have
now been measured to a precision of 0.16% or better,
clearing the way for a new determination of α, and serve as
important benchmarks for future atomic theory calculations
of kPNC.
Table I shows a term-by-term computation of the scalar

polarizability α following Eq. (1). In the second and fifth
columns, we list values of the E1 matrix elements d ¼
h7s1=2krknpJi and hnpJkrk6s1=2i, respectively, for prin-
cipal quantum number n. For n ¼ 6 and 7, we have already
discussed the values that we use. For n ¼ 8–12, we use
theoretical values of these matrix elements from Ref. [55].

The signs of these matrix elements are consistent with the
sign convention described in Refs. [53,57]. In each case,
the percentage uncertainty of the matrix element δd is listed
in columns 3 and 6. We show in column nine the
contribution of these elements to the scalar polarizability,
using the energy of npJ states listed in the table [56]. We
also show the uncertainties δα resulting from δd in this
table: δα due to the uncertainty in h7s1=2krknpJi in column
four and hnpJkrk6s1=2i in column seven, and the quad-
rature sum of these in the final column.
The final contributions to α are from npJ states with

n > 12, and valence-core contributions αvc. We calculate
the contributions from Hartree-Fock (HF) bound state wave
functions with n > 12 (bound and continuum) with the aid
of a B-spline basis set. The HF value αn>12 ¼ −0.45a30 is
obtained by subtracting the sum for n ¼ 1 to 12, in a term-
by-term HF calculation, from the sum over the entire spline
basis. Noting that the HF values contributions to alpha for
n ¼ 8 to 12 are ∼30% too high compared with the precise
theoretical values from Ref. [55] listed in Table I, we
estimate αn>12 ¼ −0.30ð15Þa30. For the valence-core con-
tributions, we determine αvc ¼ þ0.2ð1Þa30, in agreement
with the value reported in [34,35].
The final value for the scalar polarizability that we

report, α ¼ −268.82ð30Þa30 is the sum of all the contribu-
tions listed in column nine of the table. The uncertainty
δα ¼ 0.30a30 is the quadrature sum of the uncertainties
listed in the tenth column. Note that the primary uncer-
tainties now come from the uncertainties of the E1 matrix
elements h6s1=2krk8p3=2i and h6s1=2krk7p3=2i, and the tail
contributions αn>12. Our calculated value of α is in agree-
ment with prior calculations of α using the same sum-over-
states method [23,34,35], but the 0.11% precision of the
current determination is a significant improvement.
From α, we use the measured value of α=β ¼ 9.905ð11Þ

[36] to derive

β ¼ 27.139ð42Þa30: ð2Þ

We list this result, along with previous determinations of β in
Table II, and show these data graphically in Fig. 2. Our result
is consistent with, but of higher precision than, previous
values determined using the sum-over-states approach. The
previous best determination of β, shown in bold font in
Table II, comes from a calculation of the hyperfine changing
contribution to the magnetic dipole matrix elementM1hf ¼
0.8074ð8Þ × 10−5 μB=c [32], thought to be accurate to 0.1%,
and the measurement of M1hf=β ¼ −5.6195ð91Þ V=cm
[33]. This results in β ¼ 26.957ð51Þa30. Our result differs
from this value by 0.182a30ð0.67%Þ, which is larger than the
sum of their uncertainties 0.093a30ð0.34%Þ. The uncertainty
in the new value is slightly smaller than that of the previous
best value. Although β determined through the sum-over-
states approach has generally been larger than the value

FIG. 1. A graphical summary of the current status of the
measured and calculated matrix elements hnpJkrkms1=2i, where
m, n ¼ 6 or 7, and J ¼ 1=2 and 3=2 in atomic cesium. The error
bars show the magnitudes of the uncertainty of the measurements.
The data points show the deviation between the most recent
calculations of the matrix elements and the measured value.
(Deviation > 0 indicates the theoretical value is greater than the
experimental value.) The calculated values are from Ref. [34] (∘),
[25,28] (�), and [4] (×).
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determined through M1hf, as seen in Table II and Fig. 2,
uncertainties were previously too large for this to be a
concern.
We have also calculated β ¼ 27.01ð23Þa30 directly from

the E1 data displayed in Table I using the sum-over-states
expression in Eq. (40) of Ref. [23]. This value is in
agreement with Eq. (2), but with much larger uncertainty
due to significant cancellations between terms.
The new determination of the vector polarizability has an

important implication for ImðEPNCÞ. The best measurement
of ImðEPNCÞ to date is the measurement in 1997 of

ImðEPNCÞ
β

¼ 1.5935ð56Þ mV=cm ð3Þ

by Wood et al. [20]. [In the following, we base our analysis
solely on this value, rather than the 2005 measurement of
ImðEPNCÞ=β ¼ 1.538ð40Þ mV=cm by Guena et al. [58].]

To extract the weak charge Qw of the cesium nucleus
from a measurement of ImðEPNCÞ, we need theoretical
calculations of the proportionality kPNC between ImðEPNCÞ
and Qw. Many-body calculations done by [3,4] determine

ImðEPNCÞ ¼ 0.8906ð24Þ × 10−11jeja0ð−Qw=NÞ: ð4Þ
The authors use the coupled-cluster method with full
single, double, and valence triple excitations considered.
They also accounted for Breit, quantum electrodynamics,
and neutron skin corrections. The claimed 0.27% uncer-
tainty was obtained by comparison of calculations of
energies, electric dipole amplitudes, and hyperfine con-
stants. Using Eq. (4) and our value of β results in

Qw ¼ −73.66ð28Þeð20Þt; ð5Þ
where the experimental (e) and theoretical (t) uncertainties
are indicated separately. This value of the weak charge is
∼1.2σ larger than the standard model value [59],

Q2018
SM ¼ −73.23ð1Þ: ð6Þ

Dzuba et al. [5,30] introduced corrections to the core and
tail contributions to ImðEPNCÞ in Refs. [3,4] and determined

ImðEPNCÞ ¼ 0.8977ð40Þ × 10−11jeja0ð−Qw=NÞ; ð7Þ
in disagreement with Eq. (4), but in excellent agreement
with their earlier results [28,29]. Combining Eq. (7) with
our value of β results in the value of

Qw ¼ −73.07ð28Þeð33Þt; ð8Þ
∼0.3σ less than Q2018

SM .
We show in Fig. 3 the various determinations ofQw since

2002 [3–5,28,29,35]. The data point labeled Q2018
SM and the

two horizontal lines denote the standard model prediction
and its uncertainty [59]. We note plans to resolve the
differences between Eqs. (4) and (7) through a unified
calculation of all contributions (principal, tail, and core) to
ImðEPNCÞ [31].

TABLE II. This table lists several determinations of β since
1992, and we have bolded the two highest precision determi-
nations. The previous value of β with the best precision combines
a measurement in 1999 by Bennett et al. of M1hf=β and the
calculation in 2000 of M1hf. The determinations labeled “Sum
over states (α)” combine a calculation of α and the high-precision
measurement of α=β [36].

Year Authors Remarks βða30Þ
2019 This work Sum over states ðαÞ 27.139 ð42Þ
2002 Dzu02 [28] Sum over states (α) 27.15 (11)
2002 Vas02 [35] Sum over states (α) 27.22 (11)
2000 Dzu00 [32] M1hf calculation 26.957 ð51Þ
1999 Ben99 [33] M1hf=β expt 27.024 (80)
1999 Saf99 [34] Sum over states (α) 27.11 (22)
1999 Saf99 [34] Sum over states (β) 27.16
1997 Dzu97 [57] Sum over states (α) 27.15 (13)
1992 Blu92 [23] Sum over states (β) 27.0 (2)

FIG. 3. A summary of the current status of Qw determinations.
The two horizontal lines denote the standard model prediction
Q2018

SM [59]. Past determinations are Vas02 [35], Dzu02 [28],
Fla05 [29], Por10 [4], and Dzu12 [5].

FIG. 2. A summary of the current status of β determinations.
The β values shown on the left (o) are determined through a
sum-over-states of α and the ratio α=β. The two values on the
right (x) are determined through an experimental determination of
M1hf=β and a theory value of M1hf. Refer to Table II for
references to these values.
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In conclusion, we report a new, high-precision determi-
nation of the scalar (α) and vector (β) polarizabilities of the
cesium 6s → 7s transition. This was achieved using precise
values of E1 matrix elements between the lowest energy
levels of cesium, which we determined from a combination
of measurements and calculations. From that, we report
new values for the weak charge of the cesium nucleus Qw.
Our new value of β shows a significant discrepancy with β
determined through M1hf [32], which calls for new
calculations and/or measurements to address this issue.
We note that any further improvement to the determination
of α will require high-precision measurements of a few key
E1 matrix elements identified above, or alternatively, a
direct laboratory determination of α. Furthermore, any
improvement to the value of β as determined through
the method described here will require a new laboratory
measurement of α=β, since the uncertainty of the current
value of this ratio is of magnitude comparable to that of α.

This material is based upon work supported by the
National Science Foundation under Grant No. PHY-
1607603.
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[58] J. Guéna, M. Lintz, and M. A. Bouchiat, Measurement of
the parity violating 6S–7S transition amplitude in cesium
achieved within 2 × 10−13 atomic-unit accuracy by stimu-
lated-emission detection, Phys. Rev. A 71, 042108 (2005).

[59] M. Tanabashi et al. (Particle Data Group), Review of
particle physics, Phys. Rev. D 98, 030001 (2018).

PHYSICAL REVIEW LETTERS 123, 073002 (2019)

073002-6

https://doi.org/10.1103/PhysRevD.66.076013
https://doi.org/10.1103/PhysRevD.66.076013
https://doi.org/10.1103/PhysRevA.72.052115
https://doi.org/10.1103/PhysRevA.87.054502
http://arXiv.org/abs/1904.00281
https://doi.org/10.1103/PhysRevA.62.052101
https://doi.org/10.1103/PhysRevA.62.052101
https://doi.org/10.1103/PhysRevLett.82.2484
https://doi.org/10.1103/PhysRevLett.82.2484
https://doi.org/10.1103/PhysRevA.60.4476
https://doi.org/10.1103/PhysRevA.60.4476
https://doi.org/10.1103/PhysRevA.66.020101
https://doi.org/10.1103/PhysRevA.55.1007
https://doi.org/10.1051/jphyslet:019840045011052300
https://doi.org/10.1103/PhysRevLett.69.2765
https://doi.org/10.1103/PhysRevA.50.2174
https://doi.org/10.1103/PhysRevA.58.1087
https://doi.org/10.1103/PhysRevA.58.1087
https://doi.org/10.1103/PhysRevA.60.3648
https://doi.org/10.1103/PhysRevA.59.R16
https://doi.org/10.1103/PhysRevA.65.053403
https://doi.org/10.1103/PhysRevA.65.053403
https://doi.org/10.1103/PhysRevLett.91.153001
https://doi.org/10.1103/PhysRevLett.91.153001
https://doi.org/10.1103/PhysRevA.75.052501
https://doi.org/10.1103/PhysRevA.75.052501
https://doi.org/10.1103/PhysRevA.84.010501
https://doi.org/10.1103/PhysRevA.84.010501
https://doi.org/10.1103/PhysRevA.87.030503
https://doi.org/10.1103/PhysRevA.88.052516
https://doi.org/10.1103/PhysRevA.91.012506
https://doi.org/10.1103/PhysRevA.92.052513
https://doi.org/10.1103/PhysRevA.92.052513
https://doi.org/10.1103/PhysRevA.97.052507
https://doi.org/10.1103/PhysRevA.97.052507
https://doi.org/10.1103/PhysRevA.99.032504
https://doi.org/10.1103/PhysRevA.99.062510
https://doi.org/10.1103/PhysRevA.99.062510
https://doi.org/10.1103/PhysRevA.94.012505
https://doi.org/10.1103/PhysRevA.56.R4357
https://doi.org/10.1103/PhysRevA.71.042108
https://doi.org/10.1103/PhysRevD.98.030001

