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The Ruppeiner geometry of thermodynamic fluctuations provides a powerful diagnostic of black hole
microstructures. We investigate this for charged anti–de Sitter black holes and find that, while an attractive
microstructure interaction dominates for most parameter ranges, a weak repulsive interaction dominates for
small black holes of high temperature. This unique property distinguishes the black hole system from that
of a van der Waals fluid, where only attractive microstructure interactions are found. We also find two other
novel universal properties for charged black holes. One is that the repulsive interaction is independent of the
black hole charge and temperature. The other is that the behavior of the Ruppeiner curvature scalar near
criticality is characterized by a dimensionless constant that is identical to that for a van der Waals fluid,
providing us with new insight into black hole microstructures.
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Introduction.—Understanding the microscopic structure
of black holes (BHs) has been an important subject since
the establishment of the four laws of black hole thermo-
dynamics [1–4], with surface gravity and area, respectively,
identified as black hole temperature and entropy. The latter
differs from an ordinary thermodynamic system, in that it is
proportional to an area (of the event horizon) rather than a
volume. Many different kinds of approaches and theories of
gravity have been explored with an aim of understanding
this interesting property [5–11]. The salient point is to
discern the underlying degrees of freedom of a black hole,
i.e., its microscopic structure. A black hole of nonvanishing
Hawking temperature must possess its own microscopic
structure if one accepts Boltzmann’s insight: if you can heat
it, it has microscopic structure.
For an ordinary fluid system one can start from its

microscopic molecular constituents, and then construct its
macroscopic thermodynamic quantities following statisti-
cal mechanics. However, given our present state of knowl-
edge, the inverse process—a thermodynamic geometric
approach—must be carried out to discern the microscopic
structure of a black hole. We shall start with one of the
mainstays of statistical mechanics: the entropy formula
given by Boltzmann

S ¼ kB lnΩ; ð1Þ

where the Boltzmann constant kB ≈ 1.38 × 10−23J=K, and
Ω is the number of the microscopic states of the corre-
sponding thermodynamic system. Inverting this yields

Ω ¼ eS=kB ; ð2Þ

which is the starting point of thermodynamic fluctuation
theory. For a system of N þ 1 independent variables xμ

with μ ¼ 0; 1;…; N, the probability of finding its state to be
between ðx0;…; xNÞ and ðx0 þ dx0;…; xN þ dxNÞ is pro-
portional to the number of the microstates

Pðx0;…;xNÞdx0 � � �dxN ¼CΩðx0;…;xNÞdx0 � � �dxN; ð3Þ

where C is a normalization constant. Hence,

Pðx0;…; xNÞ ∝ eS=kB : ð4Þ

Consider a thermodynamic system partitioned into
a small subsystem S plus its remainder regarded as
the environment E. The total entropy can be written as
Sðx0;…; xNÞ ¼ SSðx0;…; xNÞ þ SEðx0;…; xNÞ with SS ≪
SE ∼ S. Expanding the total entropy near its local maxi-
mum at xμ ¼ xμ0, we have

S¼ S0þ
∂SS
∂xμ

����
0

ΔxμSþ
∂SE
∂xμ

����
0

ΔxμE

þ 1

2

∂2SS
∂xμ∂xν

����
0

ΔxμSΔxνSþ
1

2

∂2SE
∂xμ∂xν

����
0

ΔxμEΔxνEþ� � � ; ð5Þ

where S0 measures the local maximum of the entropy and
“j0”means jxμ¼xμ

0
. It is natural to suppose that the fluctuating

parameters are conservative and additive, i.e., xμSþxμE ¼
xμtotal¼const; hence, ð∂SS=∂xμÞj0ΔxμS¼−ð∂SE=∂xμÞj0ΔxμE.
Noting that SE is of the same scale as that of the total system,
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the last term of (5) is much smaller than the fourth term, and
one can ignore it. Hence,

ΔS ¼ S − S0 ¼
1

2

∂2SS
∂xμ∂xν

����
0

ΔxμSΔxνS þ � � � : ð6Þ

Absorbing S0 into the normalization constant, we have the
probability

Pðx0;…; xNÞ ∝ e−1=2Δl
2

; ð7Þ

where

Δl2 ¼ −
1

kB

∂2SS
∂xμ∂xνΔx

μΔxν ð8Þ

is the distance between two neighboring fluctuation
states [12].
From the perspective of thermodynamic information

geometry, the less probable a fluctuation between two
thermodynamic states, the further apart they are. Thus, this
line element (8) encodes information about the effective
interaction between two microscopic fluctuation states. For
a given fluid system, the scalar curvature of its information
metric (8) is an indicator of its microstructure interactions
[12,13]: positive (negative) scalar curvature, respectively,
implies that a repulsive (attractive) interaction dominates,
whereas vanishing curvature indicates repulsive and attrac-
tive interactions are in balance. Furthermore, it is natural to
conjecture that the value of the scalar curvature measures
the strength of the interactions. The thermodynamic poten-
tial is clearly the entropy of this information geometry,
which is known as the Ruppeiner geometry.
Ruppeiner geometry and microstructures.—Henceforth,

we set kB ¼ 1 and drop the index S in the entropy SS. Our
aim is to employ the tools of Ruppeiner geometry to the
charged anti–de Sitter (AdS) black hole system to probe its
microstructure interactions, taking the temperature T and
thermodynamic volume V as the fluctuation variables.
First, we express the line element (8) as

dl2 ¼ CV

T2
dT2 þ ð∂VPÞT

T
dV2; ð9Þ

using the thermodynamic first law for charged AdS black
holes, where CV ¼ Tð∂S=∂TÞV is the heat capacity at
constant volume. The equation of state reads [14]

P ¼ T
v
−

1

2πv2
þ 2Q2

πv4
; ð10Þ

where the specific volume v ¼ 2rh, with rh the horizon
radius. This system is known to exhibit a small-large black
hole phase transition, where the chargeQ governs the critical
point: Pc ¼ 1=96πQ2, Tc ¼

ffiffiffi
6

p
=18πQ, vc ¼ 2

ffiffiffi
6

p
Q. The

small-large black hole coexistence curve has the analytic
form [15]

T̃2 ¼ P̃ð3 −
ffiffiffiffi
P̃

p
Þ=2; ð11Þ

where T̃ ¼ T=Tc and P̃ ¼ P=Pc are the respective reduced
temperature and pressure. From this, we can construct a
phase diagram, shown in Fig. 1, in the T̃-Ṽ plane, where
Ṽ ¼ V=Vc with V ¼ 4

3
πr3h and Vc ¼ 8

ffiffiffi
6

p
πQ3. Small and

large black hole phases are, respectively, located at the left
and right. The supercritical black hole phase is above the
critical point marked with a black dot. The red (left) and blue
(right) solid curves describe saturated small and large black
holes, respectively, and below these curves is the coexistence
phase. One key feature of the coexistence region is that the
equation of state (10) does not apply.
One special property of charged AdS black holes is that

their heat capacity at constant volume vanishes, i.e.,
CV ¼ 0. This renders the line element (9) singular, and
consequently, information of the associated black hole
microstructure is not revealed from the thermodynamic
geometry. We shall deal with this by treating CV as a
constant whose value is infinitesimally close to zero,
defining a new normalized scalar curvature RN

RN ¼ RCV; ð12Þ

from the Ruppeiner curvature scalar R. Noting that the heat
capacity of a van der Waals (VDW) fluid Cv ¼ 3

2
kB is of

order 10−23, in effect, we are treating the black hole’s
vanishing heat capacity as a kB → 0þ limit. In what
follows, we show that RN provides useful information
regarding properties of the black hole’s microstructure.
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FIG. 1. Phase structure of the charged AdS black hole in T̃-Ṽ
diagram. Red (left) and blue (right) solid curves separated by the
critical point (black dot) correspond to saturated small and large
black holes. Note that, in the coexistence region (light purple) of
small and large black holes, the equation of state equation is not
applicable.
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After a simple calculation, we find

RN ¼ ð3Ṽ2=3 − 1Þð3Ṽ2=3 − 4T̃ Ṽ −1Þ
2ð3Ṽ2

3 − 2T̃ Ṽ −1Þ2 ð13Þ

for the normalized scalar curvature RN . Note that RN does
not explicitly depend on the black hole chargeQ—all black
holes with different charge share the same expression in the
reduced parameter space, a universal result. We depict
the behavior of RN in Fig. 2. We see that, for most of the
parameter space, the value of RN is near zero.
However, near the curve,

T̃div ¼
3Ṽ2=3 − 1

2Ṽ
; ð14Þ

RN changes dramatically, and on this curve, it goes to
negative infinity. This behavior also implies that the black
hole microstructure changes quickly in the vicinity of the
temperature T̃div. We also compute the curves where RN
changes sign

T̃0 ¼
3Ṽ2=3 − 1

4Ṽ
; ð15Þ

Ṽ0 ¼
1

3
ffiffiffi
3

p ; ð16Þ

whose traversal indicates a change between attractive or
repulsive interactions of the microstructure. These curves
are universal, applying to all charged AdS black holes
regardless of the value of Q.
To better understand the microstructure interactions we

compare the situation to the VDW fluid system. The
interaction between two neighboring VDW fluid molecules

is given by the Lennard-Jones potential, which describes a
short-range repulsive and longer-range attractive interac-
tion. In the “hard-core” model, the size of the molecules is
generally chosen to be equal to the equilibrium point of the
interaction [16], thereby excluding the short-range repul-
sive interaction. After taking the “mean-field” approxima-
tion, the attractive part dominates in the fluid system.
Nevertheless, repulsive interactions could exist due to
thermal effects or molecular collisions.
In Fig. 3, we illustrate the coexistence (red solid line) and

sign-changing (black dotted-dashed line) curves of the
VDW liquid and gas phases, as well as the curve T̃div
(blue dashed line) at which R diverges. Region I (shaded,
below the sign-changing curve) has positive scalar curva-
ture R indicating that the repulsive interaction dominates in
this region. Otherwise, R is negative and the attractive
interaction dominates. Furthermore, as shown in Fig. 2,
significant changes in R occur only near T̃div, and so, a
weak attractive interaction dominates for the VDW fluid
system far away from the critical case. However, we
emphasize that the equation of state is inapplicable below
the coexistence line, and so, any features appearing in the
coexistence region (such as region I) are tentative. We can
state with confidence that an attractive microstructure
interaction is always dominant for a VDW fluid above
the coexistence line.
In Fig. 4, we depict the analogous diagram for the

charged AdS black hole, whose phase transition behavior
has been known for some time to be qualitatively the same
as that of a VDW fluid [14]. Using (15) and (16), the
coexistence curve for small and large black hole phases can
be plotted, along with the sign-changing and T̃div curves for
the charged AdS black hole, all shown in Fig. 4 with the
same format. It is easy to see that the phase structure is
quite similar to the VDW system at large Ṽ; however, for

FIG. 2. Behavior of the normalized scalar curvature RN .
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FIG. 3. Characteristic curves for the VDW fluid. The coexist-
ence and sign-changing curves are, respectively, described by the
red solid and black dotted-dashed lines. The blue dashed line
corresponds to the temperature T̃div, on which R → −∞. In the
shaded region I, R > 0; otherwise, R < 0.
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small Ṽ, the situation is markedly different. In addition to
region I, two more regions, II and III, also have positiveRN .
As with the VDW fluid, the equation of state is inapplicable
below the coexistence curve, rendering the existence of
regions I and II tentative. However, the existence of region
III, above the coexistence curve, is robust. Consequently,
repulsive interactions dominate among the microstructures
of charged AdS black holes of small volume at sufficiently
high temperature, in strong contrast to the situation for a
VDW fluid. Since region III is far from the T̃div curve, RN is
small, and so, the repulsive microstructure interaction,
while dominant, is weak. A weak attractive interaction
dominates in other parameter regions above the coexist-
ence curve.
Critical behavior of the normalized scalar curvature.—

As shown above, despite the inapplicability of the equation
of state in the coexistence region, RN can diverge at the
critical point. We can expand the normalized scalar
curvature RN along the saturated small and large black
hole curves near the critical point, obtaining

RNðSBHÞ ¼ −
1

8
t−2 þ 1

2
ffiffiffi
2

p t−3=2 þOðt−1Þ; ð17Þ

RNðLBHÞ ¼ −
1

8
t−2 −

1

2
ffiffiffi
2

p t−3=2 þOðt−1Þ; ð18Þ

for the small (SBH) and large (LBH) black hole cases,
respectively, where t ¼ 1 − T̃. We see that RN → −∞ at the
critical point with a universal critical exponent of 2. Noting
that, near the critical point, the correlation length ξ ∼ t−ν,
we conclude

RN ∼ −ξ2
ν ∼ −ξ4; ð19Þ

where the latter relation follows from mean field theory, for
which ν ¼ 1=2. Since other critical phenomena, such as

critical opalescence, are closely linked with ξ, we expect
this phenomenon could have a geometric interpretation.
Further investigation should provide us with novel insight
into these different critical phenomena from a thermody-
namic geometric perspective.
Moreover, from Eqs. (17) and (18), we have

lim
t→1

RNt2 ¼ −
1

8
; ð20Þ

indicating another dimensionless universal constant of
−1=8. Interestingly, it can be shown that this constant,
obtained analytically, exactly agrees with the numerical
result of the VDW fluid [17].
Summary.—Starting from the Boltzmann entropy for-

mula, we constructed the Ruppeiner geometry for a charged
AdS black hole. Employing T and V as the fluctuation
variables, we defined a new normalized scalar curvature of
the geometry and showed that it provides useful information
concerning black hole microstructure. Previous work along
these lines employed mass and pressure as the fluctuation
variables [18]; in this case, the corresponding scalar curva-
ture does not diverge at the critical point, contrary to its use
as a diagnostic of critical phenomena [12].
In comparison to a VDW fluid system, in which the weak

attractive interaction dominates in all of parameter space
above the coexistence curve, we found that a weak
repulsive interaction dominates for charged AdS black
holes at sufficiently high temperatures and small volumes
(though elsewhere it is similar to a VDW fluid). Given
previous work on the phase behavior of charged AdS black
holes [14], this surprising result indicates that important
differences exist between this system and a VDW fluid at
the microstructure level.
Furthermore, we obtained two other new universal

properties of the microstructures for the charged AdS black
hole. One is that the sign-changing curve demarcating the
weak repulsive interactions (region III in Fig. 4) is at fixed
Ṽ, independent of charge and temperature. Another is that
the critical behavior of RN indicates the existence of a
universal critical exponent of 2 along both the saturated
small and large black hole curves, along with a universal
coefficient of −1=8. We also have RN ∼ −ξ4, suggesting
that other critical phenomena, such as critical opalescence,
may have a geometric interpretation and, more generally,
that the normalized scalar curvature RN is, indeed, indica-
tive of black hole microstructural properties.
In summary, novel information about black hole micro-

structures can be obtained from a geometric viewpoint. It
would be interesting to apply our approach to other black
hole systems with various properties, including angular
momentum [19], hair [20–22], and acceleration [23,24].
The results will provide us with considerably more detailed
information concerning the underlying degrees of freedom
giving rise to black hole thermodynamics. Of further
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FIG. 4. Characteristic curves for the charged AdS black hole.
These have the same meaning as those in Fig. 3. In the shaded
regions I, II, and III, the scalar curvature RN > 0; otherwise
RN < 0.
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interest is an investigation of the physical laws and proper-
ties of the microstructures in the coexistence region, where
the equation of state is not applicable.
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