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Continuous-time random walks offer powerful coarse-grained descriptions of transport processes.
We here microscopically derive such a model for a Brownian particle diffusing in a deep periodic potential.
We determine both the waiting-time and the jump-length distributions in terms of the parameters of the
system, from which we analytically deduce the non-Gaussian characteristic function. We apply this
continuous-time random walk model to characterize the underdamped diffusion of single cesium atoms in a
one-dimensional optical lattice. We observe excellent agreement between experimental and theoretical
characteristic functions, without any free parameter.
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Coarse graining is an essential tool for the study of
complex systems. Different levels of description of a
system’s state are commonly identified [1,2]. The micro-
scopic (fine-grained) level corresponds to the true mechani-
cal state. Its complete characterization is often out of reach,
both theoretically and experimentally, owing to its com-
plexity. By contrast, the macroscopic (coarse-grained)
regime consists of a few pertinent and accessible variables
that capture the main features of the system. All irrelevant
degrees of freedom are eliminated during coarse graining,
for instance, by averaging over them. These various
representations are usually associated with different time
scales. Each of those may be used to define intermediate
(mesoscopic) levels of coarse graining [1,2]. Equilibrium
thermodynamics is a prominent example of a coarse-
grained theory where averaged quantities such as volume,
pressure, and temperature, are introduced to specify the
macroscopic state [3,4]. On the other hand, far from
thermal equilibrium, the coarse-graining method is more
involved as the time evolution of the system needs to be
accounted for [1–5]. Connecting fine-grained and coarse-
grained descriptions is in general very challenging for any
realistic nonequilibrium system [1–5].
Continuous-time random walks (CTRWs) are a well-

established approach used to investigate the coarse-grained
nonequilibrium dynamics of complex systems [6,7]. While
jumps occur at fixed discrete times in standard random
walks, they happen at random continuous times in a CTRW.
Continuous-time random walks provide general models for
normal as well as anomalous diffusion and transport
processes. They are completely characterized by a jump-
length distribution and a waiting-time distribution between
two jumps. They offer an effective method to compute the
probability distribution of the position of the random

walker from which various transport properties, such as
moments and correlation functions, may be determined.
Continuous-time random walks have been successfully
applied in a wide range of areas, ranging from disordered
systems, plasmas and chaotic dynamics to turbulence,
biology, and finance [8–12]. Experimental evidence for
CTRWs has been found for microbead motion in recon-
stituted actin networks [13], lipid granules in cellular
cytoplasm [14], protein channels in plasma membranes
[15], and intermittent quantum dots [16]. A few micro-
scopic derivations of CTRWs have been presented [17,18].
However, in most cases, continuous-time random walks are
phenomenological as the complex microscopic dynamics is
unknown.
In this Letter, we theoretically derive a CTRW model for

a Brownian particle in a deep periodic potential starting
from the microscopic level and directly compare its
predictions to experiment. This system is ubiquitous in
physics, chemistry, and biology [19,20]. The microscopic
description is based on the Langevin equation, a stochastic
extension of Newton’s equation of motion [19,20]. This
dynamics is not exactly solvable owing to the nonlinearity
of the potential. The coarse-grained evolution is diffusive
on very long time scales with a Gaussian probability
distribution. Diffusion coefficients are known in terms of
the microscopic parameters both in the underdamped and
overdamped regimes [19–21]. However, no analytical
results are available for the probability density or the
position correlation function at intermediate finite times,
despite their experimental importance [22,23]. A meso-
scopic description is therefore needed. Such a model should
be simpler than the microscopic Langevin equation to allow
an analytical description of the statistics of the process and,
at the same time, more detailed than the macroscopic
Gaussian diffusion approximation.
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In the following, we express the jump-length and the
waiting-time distributions in terms of microscopic variables
of the system. From these two distributions, we determine
the Fourier-Laplace transform of the probability density,
also known as the dynamical structure factor [8–12], as
well as the characteristic function with the help of the
Montroll-Weiss formula for uncorrelated CTRWs [24]. We
use the characteristic function to derive explicit expressions
for the lower moments and the position correlation function
of the particle. We furthermore apply our theoretical results
to describe the underdamped diffusion of single Doppler-
cooled cesium atoms in a 1D optical lattice [25–27]. We
obtain very good agreement between experiment and
theory for the non-Gaussian characteristic function, both
as a function of time and wave vector, without any free
parameter. Finally, we determine the range of validity of the
coarse-grained CTRW model from the experimental data
and observe the transition to the macroscopic Gaussian
diffusion approximation.
Continuous-time random walk model.—The continuous-

time random walk extends the concept of a random walker,
which randomly takes unit steps to the left or to the right at
discrete time intervals, to a continuous process with
arbitrary step sizes. The main ingredients of the CTRWs
are the jump-length distribution ϕðξÞ and the waiting-time
distribution ψðτÞ. When these distributions are mutually
independent and the same for each step, they define a
renewal process [6,7]. In that case, the probability distri-
bution Pðx; tÞ is simply related to the waiting-time and
jump-length distributions in Fourier-Laplace space through
the Montroll-Weiss formula [24],

Sðk; sÞ ¼ 1 − ψ̃ðsÞ
s½1 − ϕ̂ðkÞψ̃ðsÞ� : ð1Þ

The dynamical structure factor Sðk; sÞ is here the Fourier-
Laplace transform of Pðx; tÞ, and ϕ̂ðkÞ and ψ̃ðsÞ are the
respective Fourier and Laplace transforms of the jump-
length and waiting-time distributions. Equation (1) fully
characterizes the statistics of the CTRW at arbitrary times
for given distributions ϕðξÞ and ψðτÞ. The latter are often
determined phenomenologically. We will next explicitly
derive both distributions for a Brownian particle moving in
a periodic potential.
Let us consider a classical particle of mass m in contact

with a heat bath at temperature T moving in a periodic
potential, Uðxþ LÞ ¼ UðxÞ, of period L and depth U0. Its
microscopic dynamics is governed by the underdamped
Langevin equation for the velocity vðtÞ [19,20],

_vðtÞ ¼ −γvðtÞ − 1

m
U0(xðtÞ)þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2γkBT

p
m

ηðtÞ; ð2Þ

where ηðtÞ denotes a centered and delta-correlated
Gaussian white noise, hηðtÞηðt0Þi ¼ δðt − t0Þ, γ is the

damping coefficient, and kB the Boltzmann constant. In
order to cast the dynamics described by Eq. (2) in terms of a
CTRW, we need to coarse grain and decompose it into a
series of consecutive jump and waiting events. This can be
done for deep potentials, U0 ≳ 4kBT, where the particle
spends most of the time close to one of the minima of the
potential and only occasionally escapes to another well
[28]. We identify these trapping periods with the waiting
times and the escape events with the jumps of the CTRW. In
this limit of well-separated time scales, the escape process
may be described by Kramers’ rate theory, which states that
the fraction of initially trapped particles remaining in a
potential well decays over time at a rate 1=τ0 [29]. This
immediately translates into an exponential distribution for
the escape times,

ψðτÞ ¼ 1

τ0
e−τ=τ0 : ð3Þ

Performing the Laplace inversion of the dynamical struc-
ture factor [Eq. (1)], we thus obtain the characteristic
function Kðk; tÞ in the time domain,

Kðk; tÞ ¼ e−ðt=τ0Þ½1−ϕ̂ðkÞ�: ð4Þ

Compared to the probability distribution Pðx; tÞ, this
representation has two advantages: First, the dependence
on the wave vector k for fixed time is simply related to the
Fourier transform ϕ̂ðkÞ of the jump-length distribution.
Second, at fixed k, the decay of the characteristic function
is explicitly exponential in time, allowing us to easily verify
the validity of Eq. (3) for a given jump process.
For a standard cosine-shaped potential, UðxÞ ¼ U0½1−

cosð2πx=LÞ�=2, the escape time τ0 can be estimated both in
the strong damping and weak damping limits [29],

τ0 ≃

8<
:

πγ
ω2
0

eU0=kBT for γ ≫ ω0;

π
4γ

kBT
U0

eU0=kBT for γ ≪ ω0;
ð5Þ

where ω0 ¼ 2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2U0=ðmL2Þ

p
is the curvature of the

potential at the bottom of the well. Both expressions are
valid in the limit of deep potentials U0 ≫ kBT. This
timescale is exponential in the potential depth and increases
as either the high- or low-dissipation limit is approached.
We note that more involved formulas that provide a better
approximation for moderately deep potentials may also be
obtained [30].
For strong damping, the particle immediately equili-

brates after escaping to a neighboring well and thus the
probability of jumping multiple lattice sites is negligible
[28]. In this limit, the jump length distribution is simply
ϕðξÞ ¼ δðξ� LÞ=2. By contrast, in the weak damping
regime, once the particle attains an energy sufficient for
escaping, the relaxation of the energy back towards the
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thermal average is slow, and the particle can jump over
multiple wells before becoming trapped again. An expres-
sion for the jump-length distribution, valid at low dissipa-
tion, may be obtained from the discrete probability ϕ�ðnÞ of
jumping n lattice sites of the periodic potential in either
direction derived by Mel’nikov [32],

ϕ�ðnÞ ¼ NP
�

E
kBT

n

�

with PðyÞ ¼ e−y=4
Z

∞

0

dz
z2e−yz

2=4

ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ z2

p
Þ2 ; ð6Þ

where N is a normalization constant such thatP∞
n¼1 ϕ

�ðnÞ ¼ 1. The continuous jump-length distribution
follows as ϕðξÞ ¼ ϕ�ðnÞδðjξj − nLÞ. The quantity E in
Eq. (6) denotes the energy dissipated by a particle traveling
a distance L at an energy U0 that is just sufficient to escape
from a well. It is given by [32],

E ¼ ffiffiffiffi
m

p
γ

Z
L

0

dx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½U0 −UðxÞ�

p
: ð7Þ

For the cosine-shaped potential, the integral Eq. (7) can be
evaluated explicitly and yields E ¼ 2γL

ffiffiffiffiffiffiffiffiffiffiffiffi
2mU0

p
=π. It is

important to note that the function PðyÞ behaves as PðyÞ ∝
y−1=2 for small y and as PðyÞ ∝ y−3=2e−y=4 for large y.
The tails of the jump-length distribution are hence not
exactly exponential. Contrary to a Lévy walk [21], the
jumps are at least 2 orders of magnitude shorter than the
waiting time for U0 ≳ 4kBT, even in the underdamped
limit, and thus almost instantaneous.
Because of the exponential waiting-time distribution,

Eq. (3), the CTRW is memoryless. The n-point probability
distributions hence factorize [6,7]. The 2-point probability
density can, for example, be written as the product,

Pðx2; t2; x1; t1Þ ¼ Pðx2 − x1; t2 − t1ÞPðx1; t1Þ: ð8Þ
We can accordingly express arbitrary n-point correlation
functions in terms of the characteristic function Kðk; tÞ
using Eq. (4) [30]. The position 2-point correlation function
is, for instance, given by

hxðt2Þxðt1Þi ¼ −∂k½Kðk; t2 − t1Þ∂kKðk; t1Þ�jk¼0;

¼ −
t1
τ
∂2
kϕ̂ðkÞjk¼0 ¼

t1
τ
hξ2i: ð9Þ

In addition, the second and fourth moments read

hΔx2ðtÞi ¼ t
τ0
hξ2i; ð10Þ

hΔx4ðtÞi ¼ t2

τ20

�
3hξ2i2 þ τ0

t
hξ4i

�
; ð11Þ

where we have defined the displacement ΔxðtÞ ¼ xðtÞ−
xð0Þ. The second moment [Eq. (10)] is linear in time
indicating that the position of the particle exhibits normal

diffusion with diffusion coefficient Dx ¼ hξ2i=ð2τ0Þ at all
times, as in the asymptotic Gaussian diffusion limit [19,20].
By contrast, the displacement distribution is not Gaussian
at finite times. The departure from Gaussianity may be
quantified with the excess kurtosis [19,20],

κðtÞ ¼ hΔx4ðtÞi
3hΔx2ðtÞi2 − 1 ¼ hξ4i

3hξ2i2
τ0
t
: ð12Þ

This quantity is zero for Gaussian distributions. It is
positive for the CTRW indicating that large displacements
are more prevalent than in the Brownian case. The Gaussian
limit is recovered for large times as 1=t with a rate that is
controlled by the excess kurtosis of the step-size distribu-
tion, κξ ¼ hξ4i=ð3hξ2i2Þ. Because of the algebraic decay,
deviations from Gaussian diffusion can be significant even
at longs times.
Single atoms in an optical lattice.—Our CTRW model

Eq. (4) holds for any deep periodic potential, both in the
underdamped and overdamped limits [30]. In order to test
its predictions and determine its range of validity, we now
apply it to experimental data obtained by measuring the
motion of single atoms in an optical lattice [33]. In the
experiment, a cesium atom is trapped in the periodic
potential of a one-dimensional optical lattice with U0=kB ≈
210 μK and L ¼ λ=2 where λ ¼ 790 nm is the wavelength
of the lattice beam. Damping at a rate of γ ≈ 5 × 103 s−1 is
due to a Doppler cooling force and noise is induced by
random absorption and emission of photons, resulting in a
recoil of the atom [26]. Both provide an effective thermal
bath at a temperature of T ≈ 50 μK. The thermal energy is
more than 4 times smaller than the lattice depth, corre-
sponding to the deep-potential limit. Quantum tunneling is

FIG. 1. Position of single cesium atoms diffusing in a 1D
optical lattice as a function of time. The lines show 60 randomly
chosen coarse-grained traces for a time between stroboscopic
position measurements of τflight ¼ 5 ms. Inset: Sketch of the
experiment. The atom moves in a periodic potential while
interacting with the light field of the cooling laser. The imaging
yields pictures as shown near the top of the inset with the red spot
indicating the current position of the atom.
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suppressed by frequent photon scattering with rates in
the MHz regime. The atomic motion can thus be treated
classically.
The jump-length distribution [Eq. (6)] is entirely

specified by the energy dissipation per period of the
lattice [Eq. (7)] which is equal to E ≈ 0.13kBT in the
experiment. This value corresponds to the weak damping
regime γ ≪ ω0. On the other hand, the waiting-time
distribution [Eq. (3)] is fully characterized by the escape
time τ0 from a potential well, which for the experimental
parameters is given as τ0 ≈ 3.4 ms [30]. This is the central
relevant time scale for the motion of the atom in the
optical lattice.
The position of the atom after a time τflight is measured

by ramping up the potential to U� ≈ 850 μK while the
cooling beam is switched off, effectively immobilizing the
atom, and taking a high-resolution fluorescence image.
Subsequently, the potential is lowered to U0, allowing
the atom to move again for a time τflight. Repeating this
procedure 14 times for every atom generates a coarse-
grained measurement of the diffusion process. For each
parameter set, 600 to 1000 atomic trajectories are recorded
(typical examples are shown in Fig. 1). The longest traces

spread over approximately 100 lattice sites corresponding
to a total distance of 40 μm. The position resolution is
about 2 μm. A high number of photons (of the order of 106)
are scattered during the image taking. The particle thus
loses its memory about previous steps and jumps are
independent of each other. From the experimental trajec-
tories, we determine the characteristic function asKðk; tÞ ¼P

N
j¼1 e

ikxjðtÞ=N, where xjðtÞ is the position of the atom in
the jth measurement at time t. Compared to first computing
the distribution Pðx; tÞ and then taking its Fourier trans-
form, this method has the advantage of not requiring any
spatial binning of the trajectory data, which inevitably
introduces aliasing.
Figure 2 displays the real part of the characteristic

function Kðk; tÞ, both as a function of time t (top) and
of the wave vector k (bottom) for increasing values of
τflight ¼ 5 ms, 10ms, and 50ms.A small, nonzero imaginary
part, which indicates a slightly asymmetrical position dis-
tribution, arisesmainly as a consequence of the finite number
of trajectories [30]. The symbols correspond to the exper-
imental data and the lines to the analytical predictions given
by Eq. (4) together with the jump-length distribution based
on Eq. (6), evaluated using the experimental parameters

FIG. 2. Real part of the characteristic function Kðk; tÞ of single cesium atoms diffusing in a one-dimensional optical lattice as a
function of time t (top) and wave vector k (bottom). The symbols correspond to the experimental data, the solid lines to the analytical
prediction Eq. (4) with Eq. (6), evaluated using the experimental parameters E ¼ 0.13kBT and τ0 ¼ 3.4 ms, without any free parameter.
The first, second, and third column correspond to τflight ¼ 5 ms, 10 ms, 50 ms, respectively. We observe very good agreement between
data and theoretical predictions, in particular for small values of k, which reflect the long-range behavior of the jump process. From the
panels in the top row, we see that the time dependence of the characteristic function at fixed k is well described by an exponential decay,
confirming the validity of the exponential waiting time distribution, Eq. (3). On the other hand, the panels in the bottom row show that
also the predicted dependence on k resulting from the jump length distribution [Eq. (6)] is well reproduced in the experiment. It further
provides a much better description of the data than the asymptotic Gaussian diffusion approximation with the same diffusion coefficient
(dashed lines), in particular at short times (blue). The error bars indicate the standard deviation of ReðKÞ due to the finite number of
trajectories used in its computation. Note that the theoretical curves have been adjusted to explicitly take into account the measurement
accuracy [30].
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E ¼ 0.13kBT and τ0 ¼ 3.4 ms. We observe overall remark-
able agreement between theory and experiment, without
any free parameter. In particular, the t dependence of the
characteristic function (left) confirms the exponential form
of the waiting-time distribution [Eq. (3)], while the k
dependence (right) corroborates the step-size distribution
[Eq. (6)]. Deviations are seen for large values of k, that is, at
short distances. These are, on the one hand, due to the finite
spatial resolution of the imaging process and the determi-
nation of the system parameters that enter exponentially
into the waiting time distribution. On the other hand, we
note that, since the motion of the atoms is only weakly
damped, the atoms do not immediately thermalize after a
jump. Instead, they retain their energy on time scales of the
energy autocorrelation time of τc ¼ 0.24 ms and thus have
an increased probability to jump again. These repeated-
jump events are not captured by the CTRW model. They
cause the characteristic function to depart from Eq. (4) for
values of kL=π ≳ 1=hni ≃ 0.07, where hni ≃ 14 is the
average length of a single jump in the experiment [30].
Such deviations do not occur in the overdamped regime
[30]. Comparing the CTRW of the atoms with standard
Gaussian diffusion, the difference is clearly visible at short
times (blue dashed lines in Fig. 2, in particular for the short
flight time τflight ¼ 5 ms). By contrast, on time scales that
are very long compared with the escape time τ0, the
position of the particle is the sum over many independent
jump events, and the distribution converges towards a
Gaussian in accordance with the central-limit theorem (red
dashed lines).
Conclusions.—We have derived a continuous-time ran-

dom walk model for a Brownian particle in a periodic
potential. This model represents an intermediate level of
coarse graining between the full microscopic dynamics and
a simple diffusion approximation. As such, it permits a
detailed, yet analytical characterization of the statistics of
the process. It is valid for deep potentials, U0 ≳ 4kBT, both
in the underdamped and overdamped regimes. We have
concretely determined the waiting-time and jump-length
distributions, from which we have obtained the dynamical
structure factor and the non-Gaussian characteristic func-
tion. We have, additionally, observed excellent agreement
between theoretical predictions and experimental data for
the weakly damped diffusion of single laser-cooled cesium
atoms moving in a one-dimensional optical lattice, without
any free parameter. Our results establish a transparent and
useful bridge between microscopic and macroscopic theo-
retical descriptions of a paradigmatic nonequilibrium sys-
tem and, at the same time, between analytical formulas and
experiment.
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