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We propose a method for optical interferometry in telescope arrays assisted by quantum networks. In our
approach, the quantum state of incoming photons along with an arrival time index are stored in a binary
qubit code at each receiver. Nonlocal retrieval of the quantum state via entanglement-assisted parity checks
at the expected photon arrival rate allows for direct extraction of the phase difference, effectively
circumventing transmission losses between nodes. Compared to prior proposals, our scheme (based on
efficient quantum data compression) offers an exponential decrease in required entanglement bandwidth.
Experimental implementation is then feasible with near-term technology, enabling optical imaging of
astronomical objects akin to well-established radio interferometers and pushing resolution beyond what is
practically achievable classically.
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High-resolution imaging using large telescope arrays is
by now a well-established technique in the microwave and
radio-frequency domains [1,2]. Although extending to the
optical domain may offer substantial advantages in terms of
resolution [3,4], this task is extremely challenging in
practice. The requirement of interferometric stabilization
at optical wavelengths and the weakness of light sources in
this domain have precluded the widespread adoption of
optical telescope arrays [5]. Notably, the weaker light
intensities make phase-sensitive heterodyne detection
infeasible due to vacuum fluctuations [6]; therefore,
high-resolution optical telescopes are operated by directly
interfering the collected light [7]. Then, the size of the array
(and consequently resolution) is ultimately limited by
transmission losses between telescope sites.
In this Letter, we propose a new approach to overcome

these limitations with networks [8] of quantum memories
connected via entanglement. Specifically, we describe a
scheme for efficiently determining the optical phase differ-
ence between twowidely separated receivers. Each detector
runs a “quantum shift register,” storing incident photon
states at a rate that is matched to the inverse detection
bandwidth. Then, at the anticipated mean photon arrival
rate, the memories are interrogated with entangled pairs to
provide information akin to that obtained from a radio
interferometer. Employing quantum repeater techniques
[9], this approach completely circumvents transmission
losses. The resulting increase in baseline to arbitrarily large
distances potentially allows for substantial enhancement in
imaging resolution [4].
Before proceeding, we note that the use of entanglement

to connect remote telescope sites has been proposed
previously by means of postselected quantum teleportation
of incident optical photons [10]. The key limitation of this

visionary proposal is the requirement of an excessive
amount of distributed entangled pairs. They must be
supplied at a rate similar to the spectral bandwidth of
the optical telescope, which is currently not feasible. In the

FIG. 1. Overview of basic operation. Light from a distant
source is collected at two sites and stored in quantum memory
over time bins digitized by detector bandwidth. Both the quantum
state and the arrival time of an incident photon are encoded in a
binary qubit code. For example, if the photon arrives in the fifth
time bin, corresponding to binary representation 101, we store it
in a quantum state with flipped first and third qubits at each node.
Decoding of the arrival time is accomplished by nonlocal parity
checks assisted by entangled pairs, projecting the memories onto
a known entangled state. The phase information can then be
extracted without directly interfering the signal from the two
memories, thus circumventing transmission losses. Network
resources scale only logarithmically with source intensity ϵ.
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relevant case of weak sources, such that incident photons
are rare, the use of quantum memories circumvents this
requirement. Under distributed compression, the incoming
light is efficiently processed using only ∼ log2ð1=ϵÞ
memory qubits and entangled pairs, where ϵ ≪ 1 is the
mean photon number. Then, the entire loss-free interfero-
metric operation can be realized with modest quantum
nodes consisting of about 20 qubits and a distributed
entanglement rate in the 200 kHz range. Our proposal
realizes an effective event-ready scheme, avoiding the
wasteful expenditure of entanglement for vacuum events.
In our protocol, illustrated in Fig. 1, incoming light is

stored by flipping stationary quantum bit memories [11] at
each telescope site. The storage procedure operates over a
time interval set by the detector bandwidth. Multiple qubits
are needed to record a photon spread over many time bins.
We assume that the light is weak such that most time bins
contain vacuum. Consider first a unary encoding with one
memory qubit for each time bin. After the single photon is
stored, the memories are in a superposition between one
site having the excitation versus the other: e.g.,

ðj000010…iAj000000…iB
þ eiθj000000…iAj000010…iBÞ=

ffiffiffi

2
p

;

where the memory register corresponds to the time bin. The
goal of the interferometer is to extract the relative phase θ.
To determine which memory qubits to use for interferom-
etry without collapsing the superposition, the parity of
parallel memory registers can be checked with an
entangled state per register. Introducing Bell pairs [jϕ�i ¼
ðj0; 0i � j1; 1iÞ= ffiffiffi

2
p

, where jiiAjjiB ≡ ji; ji], controlled
phase (CZ) gates between the memory qubits on either
side and the entangled pairs have the following effect:

ðj0; 0i; j1; 1iÞjϕþi →
2×CZ ðj0; 0i; j1; 1iÞjϕþi; ð1Þ

ðj0; 1i; j1; 0iÞjϕþi →
2×CZ ðj0; 1i; j1; 0iÞjϕ−i: ð2Þ

A measurement in the X basis [projecting on the states
j�i ¼ ðj0i � j1iÞ= ffiffiffi

2
p

] of each qubit in the Bell pair then
reveals their parity, from which we can infer the arrival time
because the odd-parity register is the one containing the
excitation. Its relative phase can be subsequently extracted,
e.g., via measurement of one of the qubits in theX basis and
the other in a rotated basis to interfere the phase. Similar to
a prior scheme [10], the unary code requires one entangled
pair for each time bin, implying large consumption for
practical bandwidth.
Encoding in binary accomplishes the same task but with

a logarithmic scaling of resources. We exploit that only one
photon arrives overM ∼ 1=ϵ time bins; i.e., we only have to
store one logical qubit per block. Label each time bin
m ∈ Zþ with its binary representation m2, and define

logical qubits j0̄i≡ j0…0i and j1̄mi≡ jm2i. For example,
the fifth time bin is encoded as j1̄5i ¼ j1010…0i, which is
formed from physical qubits at one site. Generally,
log2ðM þ 1Þ bits are needed to losslessly encode M
possible arrival times plus the vacuum. This encoding is
performed by a logical controlled not (CX) gate, which is a
product of physical CX gates between the control photonic
qubit and target memory qubits specified by the binary
representation:

j0iðj0̄i; j1̄jiÞ →
CXm j0iðj0̄i; j1̄jiÞ; ð3Þ

j1iðj0̄i; j1̄jiÞ →
CXm j1iðj1̄mi; j1̄j þ 1̄miÞ: ð4Þ

The encoding keeps track of the arrival time of one photon:
empty time bins leave the memories unchanged, whereas
only the time bin that does contain a photon maps into the
quantum memory via the binary code. Decoupling the
photonic qubit through an X-basis measurement completes
the encoding step but imparts a conditional phase asso-
ciated with each time bin [12]. This phase must be
corrected, requiring knowledge of the time bin when the
photon did arrive. The arrival time can be decoded while
preserving spatial coherence by applying nonlocal parity
checks on qubit pairs in the same register analogously to
the case of unary encoding described earlier. For example,
if the photon arrived in the fifth time bin, the Bell pairs
would be found in the state jϕ−ijϕþijϕ−ijϕþi…jϕþi.
Because there are log2ðM þ 1Þ qubits per memory,
log2ðM þ 1Þ preestablished entangled pairs are also
consumed.
Besides identifying the photon arrival time, the parity

checks project out the vacuum component of the state.
Modeling the astronomical object as a weak thermal source
[35,36], the light arriving in each time bin is described by a
density matrix [6]

ρAB ¼ ð1 − ϵÞρvac þ
ϵð1þ jgjÞ

2
jψþ

θ ihψþ
θ j

þ ϵð1 − jgjÞ
2

jψ−
θ ihψ−

θ j þOðϵ2Þ; ð5Þ

to the first order in ϵ, where jψ�
θ i ¼ ðj0; 1i � eiθj1; 0iÞ= ffiffiffi

2
p

and ρvac ¼ j0; 0ih0; 0j in the photon-number basis. The
first-order spatial coherence g ¼ jgjeiθ, also known as
the visibility, generally has an amplitude of jgj ≤ 1. The
nonlocal parity checks project onto the logical qubit states.
After acting on M ∼ 1=ϵ samples of ρAB, the memories
likely contain one logical excitation. This postselection via
measurement leads to efficient error accumulation, as
elaborated on below. The visibility g can then be extracted
through a logical measurement similar to the case of unary
encoding discussed above [12].
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Specifically, for the example of a photon being detected
in the fifth time bin, the memory ends up in the following
entangled state up to a known phase flip from the state
transfer operation:

ð1� jgjÞ
2

jψ̄þ
θ ihψ̄þ

θ j þ
ð1 ∓ jgjÞ

2
jψ̄−

θ ihψ̄−
θ j; ð6Þ

where jψ̄�
θ i ¼ ðj0̄; 1̄5i � eiθj1̄5; 0̄iÞ=

ffiffiffi

2
p

, which has four
entangled physical qubits ðj00; 11i � eiθj11; 00iÞ= ffiffiffi

2
p

. The
other even-parity qubits are in the j0i state and can be
traced out. After measuring the first three of the four
entangled qubits in the X basis, the remaining qubit is in the
state

1

2
½j0ih0j þ j1ih1j þ ð−1Þn−ðgj0ih1j þ H:c:Þ�; ð7Þ

where n− is the number of j−i outcomes from the X-basis
measurements. Assume n− ¼ 0 for simplicity. Applying a
phase shift of Uδ ¼ j0ih0j þ eiδj1ih1j and measuring the
qubit in the X basis will have outcome j�i with probability
½1� Reðge−iδÞ�=2. The visibility g can then be extracted by
sweeping over δ and repeating the above procedure for
many photons.
Physically, our scheme can be implemented with long-

lived atomic ground states (such as in Rb atoms) [37],
solid-state qubits with an optical interface (such as SiV
defect centers in diamond [38–40]), or spin qubits in
quantum dots [41], which have fast control. Optical cavities
ensure strong light-matter interaction [42], which is poten-
tially matched via quantum frequency conversion [43].
Absorption of the photon by an auxiliary atom in a Raman
setup [44,45] enables easy X-basis measurement, with the
same atom reused for every optical mode. Maintaining a
stable phase at the level specified by detector bandwidth
can be accomplished with a reference laser, as done in
atomic clocks [46]. Logical CX gates between the auxiliary
atom and the memory atoms could be realized as cavity-
mediated [47] or Rydberg gates [48]. Alternative schemes
involve photon-atom gates [11,49] and photon detection,
eliminating the auxiliary atom [43].
The dominant errors in our protocol will arguably

originate from the two-qubit gates. Note, however, that
all time bins except the one containing the photon will
result in trivial CX gates where the control qubit is in state
j0i. The trivial action of the CX should have an error rate
less than ϵðlog2 1=ϵÞ−1 to preserve the memory. A number
of gate schemes satisfy this criterion [12]; for example, in
photon-atom gates, the absence of a photon does not affect
the atom. We therefore assume that only the nontrivial CX
operations lead to significant errors. We also consider
higher-order corrections to the photonic density matrix
in Eq. (5), which introduce multiple-photon events leading
to undetectable errors in the binary code.

The performance of our scheme is analyzed using the
Fisher information, quantifying how much information
about a given parameter can be extracted through meas-
urement on a quantum state [50]. In our case, we wish to
estimate the visibility g ¼ g1 þ ig2, where g1 and g2 are two
real parameters, and so the Fisher information becomes a
matrix. Taking the trace norm, kFk quantifies the total
obtainable information about g: 1=kFk has the operational
interpretation of constraining the variance of the measured
data [51]. Ideal nonlocal and local schemes operating
on the state of Eq. (5) are separated by kFk ≥ Mϵ and
kFk ≤ Mϵ2, respectively [6]. Intuitively, the nonlocal
bound corresponds to the probability of detecting a photon
from a source of intensity ϵ, whereas the local bound is a
factor of ϵ worse due to the inability to discriminate against
the vacuum component of the state. Thus, the Fisher
information explicitly demonstrates how nonlocal schemes
like ours are superior to local schemes like heterodyne
detection for measuring weak thermal light, as found in the
optical domain.
Incorporating errors and operating overM time bins, we

find the following norm of the Fisher information, which is
bounded from below [12]:

kFk ≥
ðMϵÞ2

½ð1þ ϵÞM − 1�ð1þ ϵÞMþ2
μ2νlog2ðMþ1Þ

≡ kFkmin; ð8Þ

where μ≡ ptð2ft − 1Þ2ð2f1 − 1Þ2 contains the error in
mapping the photonic state to memory at one site, in
terms of the success probability pt and fidelity ft of the
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FIG. 2. Minimum number of Bell pairs needed to attain
kFk ≥ 1, corresponding to variance of ≲1 in estimating the
visibility g as a function of source intensity ϵ. We consider errors
in the coding operations parametrized by decreasing ν, as detailed
in the main text. Ideally (ν ¼ 1), M ∼ 1=ϵ time bins are encoded
per block and read out with log2ðM þ 1Þ entangled pairs. For
sufficiently large errors (ν ¼ 0.6), the encoding fails and mem-
oryless operation with the readout of every time bin is recovered,
similar to the scheme of Ref. [10].
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light-memory transfer and of the one-qubit measurement
f1, and ν≡ ð2f1 − 1Þ4ð2f2 − 1Þ4ð2fe − 1Þ contains the
error of memory coding and readout in terms of the
fidelities of one-qubit measurements f1, nontrivial two-
qubit gates f2, and preshared entanglement fe. The success
probability includes photon loss, which effectively
increases the vacuum component of the state. Other errors
are not detectable and are modeled as depolarizing channels
as a worst-case scenario. Note that kFkmin ∼Mϵ for small
ϵ, as expected for a nonlocal scheme. A larger M improves
the probability of receiving the signal of a single photon,
and hence kFkmin initially increases; eventually, however, a
maximum is reached due to competition from multiple-
photon events and imperfect quantum operations.
Therefore, the scheme can be optimized with respect to
M, operating with the minimum entanglement expenditure
needed to extract the information content of one photon:
kFkmin ≥ 1 (see Fig. 2). In the ideal case (ν ¼ 1), the
number of entangled pairs is logarithmic in 1=ϵ, which is
the number of time bins operated over so that roughly one
photon arrives, on average. Information-theoretic argu-
ments, based on the conditional entropy of the state
described by Eq. (5), predict a bound with the same
scaling, within a constant prefactor [12]. When errors
are sufficiently large (ν ≈ 60%), the memories are read
out after a single time bin. Thus, an effective memoryless
scheme similar to that of Ref. [10] is recovered, with
entanglement consumption scaling as 1=ϵ [53].
Assuming an effective detection bandwidth of

δf ¼ 10 GHz, a total area of photon collection of 10 m2,
and imaging in the V band (centered around 555 nm), we
can estimate the resources needed for a star of magnitude
10 (corresponding to ϵ ¼ 7 × 10−7), which is around the
limit of the Center for High Angular Resolution Astronomy
(CHARA) optical interferometric array [54]. Our ideal,
optimized scheme requires log21=ϵ ∼ 20 memory qubits
per site and an entanglement distribution rate of
δfϵlog21=ϵ ∼ 200 kHz [55]. The improvement over the
rate necessary for a memoryless scheme [10] with the
10 GHz effective bandwidth is a factor of 5 × 104.
Extending the current limit of the 330 m baseline of
CHARA [56] to realistic quantum network scales greater
than 10 km would increase resolution from the milliarc-
second to the microarcsecond regime [12]. Finally, we note
that the bandwidth of direct interferometers can, in practice,
be adjusted to enhance signal strength at the expense of
resolution [56]. Although the present method is limited by
the bandwidth of quantum memory, our approach readily
extends to broadband operation, as discussed in Ref. [43].
Turning to possible implementations of these ideas, we

note that the chosen detector bandwidth (10 GHz) sets the
timescale of the encoding operation, and the photon
arrival rate (1 kHz) determines the memory coherence
time. In Table I of the Supplemental Material [12], we
compare the capabilities of various physical realizations.
Among the most promising candidates are SiV centers in
diamond, striking a balancewith the gate time on the order of

nanoseconds and millisecond-scale coherence. Techniques
such as parallelization, repeated readout, and photon detec-
tion [43] improve performance with a modest overhead in
resources. Furthermore, we emphasize that our scheme
performs well in the presence of noise, which ultimately
reduces the interference, as seen in Fig. 2. Therefore, it is
amenable to experimental testing and development of noisy
intermediate-scale quantum devices. Demonstrating
kilohertz-scale entanglement generation between remote
quantum memories, high-fidelity light-matter interfaces,
and the addressing of multiple qubits at network nodes
would facilitate the realization of our proposal.
In order to image a broad object, telescope arrays

consisting of N > 2 sites are used to sample the visibility
gðxÞ across N − 1 points between x ¼ 0 and x ¼ b (b is
the baseline, or maximum length). According to the Van
Cittert-Zernike theorem [57], a Fourier transform yields an
estimate of the stellar intensity distribution IðϕÞ. To operate
in this manner, our network protocol generalizes to N > 2
nodes. Under conditions when one photon is incident on the
telescope array, we encode the optical modes in a binary
code, as in the two-node case. The nonlocal parity checks are
performed using either N-qubit Greenberger–Horne–
Zeilinger (GHZ) states, preserving coherence across the
entire array, or with W states, collapsing the operation into
pairwise readout [43]. Although a classical Fourier trans-
form of extracted pairwise visibilities may be performed,
the GHZ approach enables a quantum Fourier transform
directly on the stored quantum state (see Fig. 3). Coherent
processing of the visibilities in the latter case results in an

FIG. 3. Generalization to N > 2 sites in the telescope array.
Decoding with aW state collapses the network state to two nodes,
and the protocol continues as before. The visibility data are stored
in a classical memory until enough events have accumulated to
perform a Fourier transform (FT). Using GHZ states instead
preserves coherence across the network. Quantum teleporting the
memories to one site for convenience, a quantum Fourier trans-
form (QFT) is applied, yielding the desired intensity distribution
directly as the probabilities of measurement outcomes.
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additional improvement in the signal-to-noise ratio because
the noise associatedwith pairwisemeasurements is avoided.
The exact improvement depends on the nature of the source
distribution, but it can be on the order of

ffiffiffiffi

N
p

[43].
In conclusion, we have proposed a protocol for perform-

ing nonlocal interferometry over a quantum network, which
is relevant for astronomical imaging. By encoding the
quantum state of the incoming photons into memory, we
realize an effective “event-ready” scheme with efficient
entanglement expenditure. The nonlocality is vital for
removing vacuum noise in imaging weak thermal light,
and distributed entanglement circumvents transmission
losses. Hence, our scheme enables near-term quantum
networks to serve as a platform for powerful optical
interferometers that are demonstrably superior to what
can be achieved classically. Furthermore, quantum algo-
rithms can be used to process the stored signals such that
the stellar intensity distribution can be inferred with a
further improvement in the signal-to-noise ratio.
Although we focused on addressing fundamental limi-

tations, real-world interferometry suffers from many other
practical challenges, such as stabilization and atmospheric
phase fluctuations [5], which we address in Table II of the
Supplemental Material [12]. For example, in Earth-based
systems, atmospheric distortion can be tackled via a
combination of adaptive optics and fringe tracking. Such
techniques are already being deployed in smaller-scale
astronomical interferometers [3] and are fully compatible
with our proposal. Moreover, these challenges and control
methods do not scale unfavorably with the baseline beyond
certain physical correlation lengths [5], such that the
construction of very large telescope arrays may be envi-
sioned. Alternatively, space-based implementation avoids
many of these technical issues, potentially extending over
the 104 km scale [58] using entanglement distributed by
satellites [59]. Because the astronomical origin of the weak
thermal light is not crucial, such networks could also be
applied to terrestrial imaging.
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