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The dynamics of a quantum system can be simulated using a quantum computer by breaking down the
unitary into a quantum circuit of one and two qubit gates. The most established methods are the Trotter-
Suzuki decompositions, for which rigorous bounds on the circuit size depend on the number of terms L in
the system Hamiltonian and the size of the largest term in the Hamiltonian Λ. Consequently, the Trotter-
Suzuki method is only practical for sparse Hamiltonians. Trotter-Suzuki is a deterministic compiler but it
was recently shown that randomized compiling offers lower overheads. Here we present and analyze a
randomized compiler for Hamiltonian simulation where gate probabilities are proportional to the strength
of a corresponding term in the Hamiltonian. This approach requires a circuit size independent of L and Λ,
but instead depending on λ the absolute sum of Hamiltonian strengths (the l1 norm). Therefore, it is
especially suited to electronic structure Hamiltonians relevant to quantum chemistry. Considering propane,
carbon dioxide, and ethane, we observe speed-ups compared to standard Trotter-Suzuki of between 306×
and 1591× for physically significant simulation times at precision 10−3. Performing phase estimation at
chemical accuracy, we report that the savings are similar.
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Quantum computers could be used to mimic the dynam-
ics of other quantum systems, providing a computational
method to understand physical systems beyond the reach of
classical supercomputers. A quantum computation is bro-
ken down into a discrete sequence of elementary one and
two qubit gates. To simulate the continuous unitary
evolution of the Schrödinger equation, an approximation
must be made into a finite sequence of discrete gates. The
precision of this approximation can be improved by using
more gates. The standard approaches are the Trotter and
higher order Suzuki decompositions [1–3]. In addition to
simulating dynamics, we are often interested in learning the
energy spectra of Hamiltonians. Assuming a good ansatz
for the ground state, we can combine quantum simulation
with phase estimation to find the energy of the ground state
[4] and excited states [5–7]. For a molecule with unknown
electronic configuration, this is called the electronic struc-
ture problem [8,9] and it is crucially important in chemistry
and material science. However, electronic structure
Hamiltonians contain a very large number of terms and
unfortunately the gate count of Trotter-Suzuki increases
with the number of terms. While the scaling is formally
efficient, the required number of gates is impractically
large. An alternative to the Trotter-Suzuki method without
this scaling problem would therefore have significant
applications.
A recurrent theme in the literature is that stochastic

noise can be less harmful than coherent noise [10,11],
which hints that randomization might be useful for washing
out coherent errors in circuit design. Poulin et al. [12]
showed that randomness is especially useful in the

simulation of time-dependent Hamiltonians as it allows
us to average out rapid Hamiltonian fluctuations. Campbell
[13] and Hastings [14] have shown that random compi-
ling can actually help reduce errors below what is feasible
with a deterministic compiler. Since the optimization of
Hamiltonian simulation circuits is a special case of compi-
lation, one expects random compilers to be helpful in this
setting. Following this line of reasoning, Childs, Ostrander,
and Su [15] showed that it is useful to randomly permute
the order of terms in Trotter-Suzuki decompositions.
However, randomly permuted Trotter-Suzuki decomposi-
tions still suffer the same scaling problem that plagues
deterministic Trotter-Suzuki; that is, the gate count depends
on the number of Hamiltonian terms.
Here we propose a simple and elegant approach to

Hamiltonian simulation that uses randomization to cure
this scaling problem. Our proposal is similar to Trotter-
Suzuki in that we implement a sequence of small rotations,
without any use of ancillary qubits or complex circuit
gadgets. Our key idea is to weight the probability of
gates by the corresponding interaction strength in the
Hamiltonian. Our simulation scheme can be seen as a
Markovian process, which is inherently random but biased
in such a way that we stochastically drift toward the correct
unitary with high precision. For this reason, we call it the
quantum stochastic drift protocol, or simply QDRIFT.
Unlike any Trotter-Suzuki method, the gate count of
QDRIFT is completely independent of the number of terms
in the Hamiltonian. Consequently, we find that our
approach can speed up quantum simulations of electronic
structure Hamiltonians by several orders of magnitude
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within regimes of practical interest. For the example of 60
qubit ethane, we find a speed-up of over a factor of 1000
when the approximation error is 0.001 and the simulation
time is t ¼ 6000 (the same simulation time often used in
phase estimation [16]). In quantum chemistry, phase
estimation is performed using controlled eitH unitaries
and here our techniques can lead to even larger resource
savings.
Our analysis is limited in scope in twoways. First,we only

compare against other Trotter-Suzuki decompositions.
However, there are numerous approaches outside the
Trotter-Suzuki family that make use of ancillary qubits
and complex gadgets to obtain better asymptotic perfor-
mance [17–22], such as the LCU (linear combinations of
unitary) technique. Second, we only compare performance
of rigorous bounds on gate counts, even though numerical
studies of small systems show that far fewer gates are needed
than are suggested by rigorous bounds [23–25].Note that for
the special case of local Hamiltonians, tighter analysis is
possible because error propagation is localized and obeys
Lieb-Robinson bounds [26,27], but, unfortunately, the
electronic structure Hamiltonians are highly nonlocal.
The Hamiltonian simulation problem.—We begin by

restating the problem more formally. Consider a
Hamiltonian

H ¼
XL
j¼1

hjHj ð1Þ

decomposed into a sum of Hj each of which is Hermitian
and normalized (such that the largest singular value ofHj is
1). We can always choose Hj so that the weighting hj are
positive real numbers. Herein we denote λ ¼ P

j hj and
remark that this upper bounds the largest singular value of
H. The decomposition of the Hamiltonian should be such
that for each Hj the unitary eiτHj can be implemented on
our quantum hardware for any τ. Our goal is then to find an
approximation of eitH into a sequence of eiτHj gates up to
some desired precision. We use the number of eiτHj

unitaries to quantify the cost of the quantum computation,
and we aim to minimize the number of such unitaries used.
In the simplest Trotter formulae, one divides U ¼ eitH into
r segments so that U ¼ Ur

r with Ur ¼ eitH=r and uses that

Vr ¼
YL
j¼1

eithjHj=r ð2Þ

approaches Ur in the large r limit. Furthermore, r repe-
titions of Vr will approach U in the large r limit, so
Vr
r → U. The gate count in this sequence will be N ¼ Lr,

so we would like to know the smallest r that suffices to
achieve a desired precision ϵ. Analytic work on this
problem (we use the analysis of Refs. [15,25]) shows that
the Trotter error is no more than

ϵ ¼ L2Λ2t2

2r
eΛtL=r; ð3Þ

where Λ ≔ maxjhj is the magnitude of the strongest term
in the Hamiltonian. Solving for r we find approximately
r ∼ L2Λ2t2=2ϵ segments are needed, each segments con-
tains L unitaries, leading to a total gate count of
N ¼ Lr ∼ L3ðΛtÞ2=2ϵ. Table I compares this against other
approaches including more sophisticated higher-order
Suzuki decompositions. As we increase the order of the
decomposition, the scaling approaches OðL2ΛtÞ, although
the constant factors become rapidly worse for higher
orders, so that in practice the optimal choice is usually
second or fourth order. Childs, Ostrander, and Su showed
that randomly permuted Trotter decompositions can further
improve the gate count (see Table I).
Having reviewed the prior art of product formulae, we

notice the L dependence never improved below quadratic.
Therefore, Trotter decompositions are limited to simula-
tions of quantum systems with sparse interactions, so that L
must scale polynomially with the system size n.
Furthermore, in chemistry problems L ¼ Oðn4Þ and while
technically efficient, the resulting Oðn8Þ scaling is pro-
hibitively large. Next we turn to our protocol that eliminates
this dependence.
The QDRIFT protocol.—Our full algorithm is given as

pseudocode in Fig. 1. Each unitary in the sequence is
selected independently from an identical distribution (IID
sampling). The strength τj of each unitary is fixed to a
constant τj ¼ τ ≔ tλ=N, which is independent of hj, so we
implement gates of the form eiτHj . The probability of
choosing unitary eiτHj is weighted by the interaction
strength hj, with normalization of the distribution entailing
that pj ¼ hj=λ. Therefore, the full circuit implemented is
labeled by an ordered list of j values j ¼ fj1; j2;…; jNg
that corresponds to unitary

Vj ¼
YN
k¼1

eiτHjk ; ð4Þ

which is selected from the product distribution
Pj ¼ λ−N

Q
N
k¼1 hjk . While this quantum process is random,

TABLE I. Resource scaling for different product formulae (see
the Supplemental Material [28] for details and caveats).

Protocol Gate count (upper bound)

1st order Trotter DET O½L3ðΛtÞ2=ϵ�
2nd order Trotter DET O½L5=2ðΛtÞ3=2=ϵ1=2�
(2k)th order Trotter DET O½L2þð1=2kÞðΛtÞ1þð1=2kÞ=ϵ1=2k�
(2k)th order Trotter RANDOM O½L2ðΛtÞ1þð1=2kÞ=ϵ1=2k�
QDRIFT (general result) O½ðλtÞ2=ϵ�
QDRIFT (when λ ¼ ΛL) O½L2ðΛtÞ2=ϵ�
QDRIFT (when λ ¼ Λ

ffiffiffiffi
L

p
) O½LðΛtÞ2=ϵ�
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we build into the probabilities a bias so that with many
repetitions the evolution stochastically drifts towards the
target unitary. Since each unitary is sampled independently,
the process is entirely Markovian and we can consider the
evolution resulting from a single random operation. The
evolution is mathematically represented by a quantum
channel that mixes unitaries as follows

EðρÞ ¼
X
j

pjeiτHjρe−iτHj ð5Þ

¼
X
j

hj
λ
eiτHjρe−iτHj: ð6Þ

Using Taylor series expansions of the exponentials, we
have that to leading order in τ,

EðρÞ ¼ ρþ i
X
j

hjτ

λ
ðHjρ − ρHjÞ þOðτ2Þ: ð7Þ

We compare this with the channel UN that is one Nth of the
full dynamics we wish to simulate, so that

UNðρÞ ¼ eitH=Nρe−itH=N

¼ ρþ i
t
N
ðHρ − ρHÞ þO

�
t2

N2

�
; ð8Þ

where we have expanded out to leading order in t=N. Using
that H ¼ P

j hjHj, we have

UNðρÞ ¼ ρþ i
X
j

thj
N

ðHjρ − ρHjÞ þO

�
t2

N2

�
: ð9Þ

Comparing E and UN , we see that the zeroth and first order
terms match whenever τ ¼ tλ=N. The higher order terms
will not typically match and more careful analysis (see the
Supplemental Material [28]) shows that the channels E and
UN differ by an amount bounded by

δ ≤
2λ2t2

N2
e2λt=N ≈

2λ2t2

N2
; ð10Þ

where the first inequality is rigorous and the approximation
on the right is very accurate even for modest N.
Since δ is the approximation error on a single random

operation E, the error of N repetitions EN relative to the
target unitary U is then

ϵ ¼ Nδ≲ 2λ2t2

N
: ð11Þ

We see the total error decreases as we increase N. Setting N
to NQD ¼ 2λ2t2=ϵ (rounding up to nearest integer) suffices
to ensure that Nδ is less than the required precision ϵ. The
exact value of N is easily calculated, but again the
aforementioned approximation is very good.
Asymptotics comparison.—The QDRIFTapproach needs

approximately 2λ2t2=ϵ gates and we include this in Table I
to compare against prior methods. Since it does not
explicitly depend on L, there are no sparsity constraints
and this is the only known product formulae to beat the
OðL2Þ barrier. Though one may argue that L dependence is
hidden in λ ¼ P

j hj. The bounds for other Trotter-Suzuki
formulae are given in terms of Λ ¼ maxj hj, and these
quantities are related by λ ≤ ΛL. The worst case for
QDRIFT is therefore λ ¼ ΛL, which occurs for systems
like the 1D nearest neighbor Heisenberg chain [15,25,32].
In this regime, QDRIFT is significantly better than first-
order Trotter but the asymptotics suggest that it will be
outperformed by higher-order Trotter. However, many real
world systems have long range interactions that lead to
λ ≪ ΛL. For instance, if we had λ ∼ Λ

ffiffiffiffi
L

p
then the

QDRIFT scaling would be OðLÞ, which is comfortably
better than the OðL2Þ that was the best prior art. While
QDRIFT has significantly better L dependence, it does
depend quadratically on Λt whereas higher-order Trotter
approaches linear scaling in Λt. Therefore, for a fixed
Hamiltonian, QDRIFT may excel for short times, but there
will always be a critical t value above which it per-
forms worse.
Numerics.—We have generated electronic structure

Hamiltonians for propane, carbon-dioxide and ethane by
using the OPENFERMION library [33], which naturally
satisfy λ ≪ ΛL and so QDRIFT should perform favorably.
We present our results in Fig. 2 using target precision
ϵ ¼ 10−3. Observe that QDRIFT offers a significant ad-
vantage at low t, which is often several orders of magnitude
better than any prior Trotter-Suzuki decomposition. We
remarked in our introduction that t ¼ 6000 has been

FIG. 1. Pseudocode for the QDRIFT protocol.
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identified as relevant for phase estimation in quantum
chemistry problems [16] and here we see speed-ups of
591×, 306×, and 1006× for propane, carbon dioxide, and
ethane (respectively). However, since QDRIFT scales
worse with t than higher-order Trotter, for longer time
simulations our advantage decreases and we eventually
observe a crossover at times around t ¼ 107–108 where
prior methods perform better. But this crossover does not
occur until the simulation time is so long that 1023 − 1025

gates are required. This is an extremely high gate count.
Quantum error correction would certainly be needed and it
is well known that to implement this many non-Clifford
gates would require many billions of physical qubits even
with generous hardware assumptions [34–37]. For these
molecules, any foreseeable device performing Hamiltonian
simulation would significantly benefit from using QDRIFT
over standard Trotter-Suzuki.
Phase estimation.—When using phase estimation to find

ground state energies, one performs many controlled-
expðiHtÞ rotations. Estimating energies to precision
δE—chemical precision means δE ∼ 10−4—the largest time
used is at least t ∼ π=δE, with slightly longer times needed
to boost the inherent success probability of phase estima-
tion. Note that the Trotter error ϵ is not directly connected to
δE but instead contributes to the failure probability.
Running phase estimation several times allows us to handle
modest failure probabilities, so in practice ϵ can be much
larger than δE. Therefore, the relevant ϵ and t regime for
phase estimation matches the regime where QDRIFT
performs well in simulation tasks. We provide a detailed
analysis of phase estimation in the Supplemental Material
[28], which shows that QDIRIFT offers 2–3 orders of
magnitude improvement when the failure probability of a
single run is 5%.
Diamond norm distance.—An important technicality is

that for a random circuit the appropriate measure of error ϵ
is the diamond norm distance [38]. If we instead consider a
specific instance of a randomly chosen unitary Vj in

Eq. (4), then the error will typically (on average) be much
larger than ϵ, with standard statistical arguments (see e.g.,
Ref. [12]) suggesting it would be closer to

ffiffiffi
ϵ

p
. It is

counterintuitive that the random circuit error is consider-
ably less than the error of any particular unitary, so let us
elaborate. If we initialize the quantum computer in state
jψi, then QDRIFT leads to state jΨji ¼ Vjjψi with
probability Pj. If our experimental setup forgets (erases
from memory) which unitary was implemented, then it
prepares the mixed state

ρ ¼ ENðjψihψ jÞ ¼
X
j

PjVjjψihψ jV†
j ¼

X
j

PjjΨjihΨjj:

ð12Þ
Since this channel is ϵ close in diamond distance to the ideal
channelU, it follows that ρ is ϵ close in trace normdistance to
the target state Uðjψihψ jÞ ¼ Ujψihψ jU†. Trace norm dis-
tance is the relevant quantity because it ensures that if we
perform a measurement, then the probabilities of the out-
comes (on state ρ) do not differ by more than 2ϵ from the
ideal probability given by Ujψi. Provided we estimate
expectation values over several runs, each using a new
and independent, randomly generated unitary, the precision
of our estimate will be governed by ϵ rather than the looserffiffiffi
ϵ

p
bound obtained without use of the diamond norm.

Discussion.—A common setting is whereHj are taken as
tensor products of Pauli spin operators, then eiτHj can be
realized using Clifford gates and a single-qubit Pauli Z
rotation [39]. When performing quantum error correction,
the resource overhead of Clifford gates is negligible [34,35]
whereas the single-qubit Pauli Z rotation must be decom-
posed into a large number of single-qubit T and Clifford
gates. One further advantage of QDRIFT is that it con-
sumes many Pauli rotations of exactly the same angle,
allowing the use of adder-circuit catalysis that significantly
reduces T-counts [40,41]. This is especially true when the
Pauli rotations belong to the Clifford hierarchy [42], since

FIG. 2. The number of gates used to implementU ¼ expðiHtÞ for various t and ϵ ¼ 10−3 and three different Hamiltonians (energies in
Hartree) corresponding to the electronic structure Hamiltonians of propane (in STO-3G basis), carbon dioxide (in 6-31g basis), and
ethane (in 6-31g basis). Since the Hamiltonian contains some very small terms, one can argue that conventional Trotter-Suzuki methods
would fare better if they truncate the Hamiltonian by eliminating negligible terms. For this reason, whenever simulating to precision ϵwe
also remove from the Hamiltonian the smallest terms with weight summing to ϵ. This makes a fairer comparison, though in practice we
found it made no significant difference to performance. For the Suzuki decompositions we choose the best from the first four orders,
which is sufficient to find the optimal.
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one then has the option of directly distilling magic states
providing the rotation without further compilation [43–46].
Interestingly, Duclos-Cianci and Poulin [44] give a short
discussion of how their magic state distillation protocol
could be used in a Hamiltonian simulation scheme using a
modified-Trotter decomposition where the gates all have
the same τ value. While they allude to such a Hamiltonian
simulation protocol, they do not provide any details or error
analysis and nor did they suggest that randomization would
be part of the protocol.
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