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Resource theories in quantum information science are helpful for the study and quantification of the
performance of information-processing tasks that involve quantum systems. These resource theories also
find applications in other areas of study; e.g., the resource theories of entanglement and coherence have
found use and implications in the study of quantum thermodynamics and memory effects in quantum
dynamics. In this paper, we introduce the resource theory of unextendibility, which is associated with the
inability of extending quantum entanglement in a given quantum state to multiple parties. The free states in
this resource theory are the k-extendible states, and the free channels are k-extendible channels, which
preserve the class of k-extendible states. We make use of this resource theory to derive nonasymptotic,
upper bounds on the rate at which quantum communication or entanglement preservation is possible by
utilizing an arbitrary quantum channel a finite number of times, along with the assistance of k-extendible
channels at no cost. We then show that the bounds obtained are significantly tighter than previously known
bounds for quantum communication over both the depolarizing and erasure channels.
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Introduction.—Recent years have seen progress in the
development of programmable quantum computers and
information processing devices; several groups are actively
developing superconducting quantum processors [1] and
satellite-to-ground quantum key distribution [2]. It is thus
pertinent to establish benchmarks on the information-process-
ing capabilities of quantum devices that are able to process a
finite number of qubits reliably. Experimentalists can then
employ these benchmarks to evaluate how far they are from
achieving the fundamental limitations on performance.
In this paper, we first develop a resource theory of

unextendibility and then apply it to bound the performance
of quantum processors. In particular, the resource theory of
unextendibility leads to non-asymptotic upper bounds on
the rate at which entanglement can be preserved when
using a given quantum channel a finite number of times. We
then apply this general bound to depolarizing and erasure
channels, which are common models of noise in quantum
processors. For these channels, we find that our bounds are
significantly tighter than previously known nonasymptotic
bounds from Refs. [3,4].
The resource theory of unextendibility can be understood

as a relaxation of the well-known resource theory of
entanglement [5,6], and it is a relaxation alternative to
the resource theory of negative partial transpose states from
Refs. [7,8], in which the free states are the positive partial

transpose (PPT) states and the free channels are completely
PPT-preserving channels. In the resource theory of entan-
glement, the free states are the separable states, those not
having any entanglement at all. Any separable state σAB can
be written as σAB ¼ P

x pðxÞτxA ⊗ ωx
B, where pðxÞ is a

probability distribution and fτxAgx and fωx
Bgx are sets of

states; the free channels are those that can be performed by
local operations and classical communication (LOCC)
[5,9]. An LOCC channel LAB→A0B0 is a separable super-
operator (although the converse is not true), and can
hence be written as LAB→A0B0 ¼ P

y E
y
A→A0 ⊗ F y

B→B0 , where
fEy

A→A0 gy and fF y
B→B0 gy are sets of completely positive

(CP) maps such that LAB→A0B0 is trace preserving. A special
kind of LOCC channel is a one-way (1W-) LOCC channel
fromA toB, in which Alice performs a quantum instrument,
sends the classical outcome to Bob, who then performs a
quantum channel conditioned on the classical outcome
received from Alice. As such, any 1W-LOCC channel takes
the form stated above, except that fEy

A→A0 gy is a set of CP
maps such that the sum map

P
y E

y
A→A0 is trace preserving,

while fF y
B→B0 gy is a set of quantum channels.

The set of free states in the resource theory of unextend-
ibility is larger than the set of free states in the resource
theory of entanglement. By relaxing the resource theory of
entanglement in this way, we obtain tighter, nonasymptotic
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bounds on the entanglement transmission rates of a
quantum channel.
Before we begin with our development, we note here that

detailed proofs of all statements that follow are given in our
companion paper [10].
Resource theory of unextendibility.—In the resource

theory of unextendibility, there is implicitly a positive
integer k ≥ 2, with respect to which the theory is defined.
The free states in this resource theory are the k-extendible
states [11–13], a prominent notion in quantum information
and entanglement theory that we recall now. For a
positive integer k ≥ 2, a bipartite state ρAB is k extendible
with respect to system B if (1) (State extension) There
exists a state ωAB1���Bk

that extends ρAB, so that
TrB2���Bk

fωAB1���Bk
g ¼ ρAB, with systems B1 through Bk

each isomorphic to system B of ρAB. (2) (Permutation
invariance) The extension state ωAB1���Bk

is invariant with
respect to permutations of the B systems, in the sense that
ωAB1���Bk

¼ Wπ
B1���Bk

ωAB1���Bk
Wπ†

B1���Bk
, where Wπ

B1���Bk
is a

unitary representation of the permutation π ∈ Sk, with Sk
denoting the symmetric group.
To give some physical context to the definition of a k-

extendible state, suppose that Alice and Bob share a
bipartite state and that Bob subsequently mixes his system
and the vacuum state at a 50∶50 beam splitter. Then the
resulting state of Alice’s system and one of the outputs of
the beam splitter is a two-extendible state by construction.
As a generalization of this, suppose that Bob sends his
system through the N-splitter of Ref. [14], [Eq. (10)] with
the other input ports set to the vacuum state. Then the state
of Alice’s system and one of the outputs of the N splitter is
N extendible by construction. One could also physically
realize k-extendible states in a similar way by means of
approximate quantum cloning machines [15].
It is worthwhile to mention that there are free states in the

resource theory of unextendibility that are not free in the
resource theory of entanglement. For example, if we send
one share of the maximally entangled state ΦAB through
a 50% erasure channel [16], then the resulting state
1
2
ðΦAB þ IA=2 ⊗ jeihejBÞ is a two-extendible state, and

is thus free in the resource theory of unextendibility for
k ¼ 2. However, this state has distillable entanglement via
LOCC [17], and so it is not free in the resource theory of
entanglement.
Let EXTkðA;BÞ denote the set of k-extendible states,

where with this notation and as above, we take it as implicit
that the system B is being extended. The k-extendible states
are a relaxation of the set of separable (unentangled) states,
in the sense that a separable state is k extendible for any
positive integer k ≥ 2. Furthermore, if a state ρAB is
entangled, then there exists some k for which ρAB is
not k extendible, and ρAB is not l extendible for all
l > k [12,13].
We define the free channels in the resource theory of

unextendibility to be bipartite channels that satisfy two

constraints generalizing those given above for the free
states. Recall that a bipartite channel N AB→A0B0 has two
input systems A and B and two output systems A0 and B0.
The systems A and A0 are held by a single party Alice,
and the systems B and B0 are held by another party
Bob. It could be the case that any of these systems
encompass a number of smaller subsystems, and we
make use of this in what follows. We define a
bipartite channel N AB→A0B0 to be k extendible if
(1) (Channel extension) There exists a quantum channel
MAB1���Bk→A0B0

1
���B0

k
that extends N AB→A0B0 , in the sense that

the following equality holds for all quantum states θAB1���Bk
:

TrB0
2
���B0

k
fMAB1���Bk→A0B0

1
���B0

k
ðθAB1���Bk

Þg ¼ N AB→A0B0 ðθAB1
Þ,

with B1 � � �Bk each isomorphic to B, and B0
1 � � �B0

k each
isomorphic to B0. (2) (Permutation covariance) The exten-
sion channel MAB1���Bk→A0B0

1
���B0

k
is covariant with respect to

permutations of the input B and output B0 systems, in the
sense that the following equality holds for all quantum states
θAB1���Bk

: MAB1���Bk→A0B0
1
���B0

k
ðWπ

B1���Bk
θAB1���Bk

Wπ†
B1���Bk

Þ ¼
Wπ

B0
1
���B0

k
MAB1���Bk→A0B0

1
���B0

k
ðθAB1���Bk

ÞWπ†
B0
1
���B0

k
, where Wπ

B1���Bk

and Wπ
B0
1
���B0

k
are unitary representations of the permuta-

tion π ∈ Sk.
The first condition above can be understood as a no-

signaling condition. That is, it implies that it is impossible
for the parties controlling the B2 � � �Bk systems to com-
municate to the parties holding systems A0B0

1.
We advocate that our definition above is a natural channel

generalization of state extendibility, since the reduced chan-
nel N AB→A0B0 of the channel extension MAB1���Bk→A0B0

1
���B0

k
is

defined in an unambiguous way only when we impose a no-
signaling constraint. Furthermore, the above definition is
quite natural in the resource theory of unextendibility
developed here, as evidenced by the following theorem:
Theorem 1: Let ρAB ∈ EXTkðA;BÞ, and let N AB→A0B0

be a k-extendible channel. Then the output state
N AB→A0B0 ðρABÞ is k extendible.
The above theorem is fundamental for the resource

theory of unextendibility, indicating that the k-extendible
channels are free, as they preserve the free states.
There are several interesting classes of k-extendible

channels that we can consider. Even if it might seem
trivial, we should mention that a particular kind of k-
extendible channel is in fact a k-extendible state, in which
the input systems A and B are trivial. Thus, k-extendible
channels can generate k-extendible states.
Any 1W-LOCC channel is k extendible for all k ≥ 2,

similar to the way in which any separable state is k
extendible for all k ≥ 2. Thus, a 1W-LOCC channel is
free in the resource theory of unextendibility. The fact that a
1W-LOCC channel takes a k-extendible input state to a k-
extendible output state had already been observed for the
special case k ¼ 2 in Ref. [18].
Quantifying unextendibility.—In any resource theory, it

is pertinent to quantify the resourcefulness of the resource
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states and channels. It is desirable for any quantifier to be
non-negative, attain its minimum for the free states and
channels, and be monotone under the action of a free
channel [19]. With this in mind, we define the k-unextend-
ible generalized divergence of an arbitrary density operator
ρAB as follows:

EkðA;BÞρ ¼ inf
σAB∈EXTkðA;BÞ

DðρABkσABÞ; ð1Þ

where DðρkσÞ denotes a generalized divergence [20,21],
which is any quantifier of the distinguishability of states ρ
and σ that is monotone under the action of a quantum
channel. Special cases of the quantifier in Eq. (1) were
previously defined in Refs. [18,22] (relative entropy to two-
extendible states and to k-extendible states, respectively),
[23] (best two-extendible approximation, related to max-
relative entropy of unextendibility defined here), and [24]
(maximum k-extendible fidelity).
Particular examples of generalized divergences

between states ρ and σ are the ε-hypothesis-testing diver-
gence Dε

hðρkσÞ [25,26], and the max-relative entropy
DmaxðρkσÞ [27,28], where for ε ∈ ½0; 1�,

Dε
hðρkσÞ ≔ −log2 inf

Λ∈½0;I�
fTrfΛσg∶TrfΛρg ≥ 1 − εg;

and DmaxðρkσÞ ≔ inffλ∶ρ ≤ 2λσg in the case that
suppðρÞ ⊆ suppðσÞ, and otherwise DmaxðρkσÞ ¼ þ∞.
Information-processing tasks.—Now that we have estab-

lished the free states and channels in the resource theory of
unextendibility, we are ready to discuss tasks that can be
performed in it. We consider two main tasks here: entan-
glement distillation and quantum communication with the
assistance of k-extendible channels. The goal of these
protocols is to use many copies of a bipartite state or
many invocations of a quantum channel, along with the free
assistance of k-extendible channels, in order to generate a
high-fidelity maximally entangled state with as much
entanglement as possible. This kind of task was defined
and developed in Ref. [29], albeit with the assistance of a
particular kind of k-extendible channel and only the case
k ¼ 2 was considered there, generalizing the usual notion
of entanglement distillation and quantum communication
protocols from Refs. [5,30–36].
Let n,M ∈ Zþ and ε ∈ ½0; 1�. Let ρAB be a bipartite state.

An ðn;M; εÞ entanglement distillation protocol assisted by
k-extendible channels begins with Alice and Bob sharing n
copies of ρAB, to which they apply a k-extendible channel
KAnBn→MAMB

, where it is understood that this is a bipartite
channel with Alice possessing systems An andMA and Bob
possessing systems Bn andMB. The resulting state satisfies
the following performance condition:

F½KAnBn→MAMB
ðρ⊗n

ABÞ;ΦMAMB
� ≥ 1 − ε; ð2Þ

where ΦMAMB
≔ ð1=MÞPm;m0 jmihm0jMA

⊗ jmihm0jMB
is

a maximally entangled state of Schmidt rank M and
Fðω; τÞ ≔ k ffiffiffiffi

ω
p ffiffiffi

τ
p k21 is the quantum fidelity [37]. Let

DðkÞðρAB; n; εÞ denote the nonasymptotic distillable entan-
glement with the assistance of k-extendible channels; i.e.,
DðkÞðρAB; n; εÞ is equal to the maximum value of
ð1=nÞlog2M such that there exists an ðn;M; εÞ protocol
for ρAB satisfying Eq. (2).
We define two different variations of quantum commu-

nication, with one simpler and one more involved. Let
N A→B denote a quantum channel. In the simpler version, an
ðn;M; εÞ entanglement transmission protocol assisted by a
k-extendible postprocessing begins with Alice preparing a
maximally entangled state ΦRA0 of Schmidt rank M. She
applies a quantum channel EA0→An , which serves as an
encoding and leads to a state ρRAn ≔ EA0→AnðΦRA0 Þ. She
transmits the systems An ≔ A1 � � �An using the channel
N⊗n

A→B. Alice and Bob then perform a k-extendible channel
KRBn→MAMB

, such that

F½KRBn→MAMB
ðN⊗n

A→BðρRAnÞÞ;ΦMAMB
� ≥ 1 − ε: ð3Þ

Let QðkÞ
I ðN A→B; n; εÞ denote the nonasymptotic quantum

capacity assisted by a k-extendible postprocessing; i.e.,

QðkÞ
I ðN A→B; n; εÞ is the maximum value of ð1=nÞlog2M

such that there exists an ðn;M; εÞ protocol for N A→B
satisfying Eq. (3).
For the cases of entanglement distillation and the simpler

version of entanglement transmission, note that an ðn;M; εÞ
entanglement distillation protocol for the state ρAB is a
ð1;M; εÞ protocol for the state ρ⊗n

AB and vice versa.
Similarly, an ðn;M; εÞ entanglement transmission protocol
for the channelN A→B is a ð1;M; εÞ protocol for the channel
N⊗n

A→B and vice versa.
In the more involved version of entanglement trans-

mission, every channel use is interleaved with a k-extend-
ible channel, similar to the protocols considered in
Refs. [38–40]. Specifically, the protocol is a special case
of one discussed in Ref. [40] for general resource theories.
We do not discuss these protocols in detail here, but we
simply note that, for an ðn;M; εÞ quantum communication
protocol assisted by k-extendible channels, the perfor-
mance criterion is that the final state of the protocol should
have fidelity ≥1 − ε to a maximally entangled state ΦMAMB

of Schmidt rank M. Let QðkÞ
II ðN A→B; n; εÞ denote the

nonasymptotic quantum capacity assisted by k-extendible

channels; i.e., QðkÞ
II ðN A→B; n; εÞ is the maximum value of

ð1=nÞlog2M such that there exists an ðn;M; εÞ protocol for
N A→B as described for the more involved case above.
Theorem 2: The following bound holds for all k ≥ 2

and for any ð1;M; εÞ entanglement transmission protocol
that uses a channel N assisted by a k-extendible post-
processing:
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−log2

�
1

M
þ 1

k
−

1

Mk

�
≤ sup

ψRA

Eε
kðR;BÞτ; ð4Þ

where Eε
kðR;BÞρ ≔ infσRB∈EXTkðR;BÞD

ε
hðρRBkσRBÞ, τRB ≔

N A→BðψRAÞ, and the optimization is with respect to pure
states ψRA such that R ≃ A. The following bound holds for
all k ≥ 2 and for any ð1;M; εÞ entanglement distillation
protocol that uses a quantum state ρAB assisted by a
k-extendible postprocessing:

−log2

�
1

M
þ 1

k
−

1

Mk

�
≤ Eε

kðA;BÞρ: ð5Þ

The proof of the above theorem follows by employing
the fact that Eε

k does not increase under the action of
a k-extendible channel, because the extendibility of
a k-extendible state does not change under the action of
U ⊗ U� for a unitary U, and by employing Ref. [41],
(Theorem III 8).
Theorem 3: The following bound holds for all k ≥ 2

and for any ðn;M; εÞ quantum communication protocol
employing n uses of a channel N interleaved by
k-extendible channels:

−log2

�
1

M
þ 1

k
−

1

Mk

�
≤ nEmax

k ðN Þ þ log2

�
1

1 − ε

�
;

where

Emax
k ðN Þ ≔ sup

ψRA

inf
σRB∈EXTkðR;BÞ

DmaxðτRBkσRBÞ;

τRB ≔ N A→BðψRAÞ, and the optimization is with respect to
pure states ψRA with jRj ¼ jAj.
We note here that special cases of the entanglement

distillation and quantum communication protocols
described above occur when the k-extendible assisting
channels are taken to be 1W-LOCC channels. As such,

DðkÞðρAB; n; εÞ, QðkÞ
I ðN A→B; n; εÞ, and QðkÞ

II ðN A→B; n; εÞ
are upper bounds on the nonasymptotic distillable entan-
glement and capacities when 1W-LOCC channels are
available for assistance.
Pretty strong converse for antidegradable channels.—

As a direct application of Theorem 3, we revisit the “pretty
strong converse” of Ref. [42] for antidegradable channels.
Recall that a channelN A→B is antidegradable [43,44] if the
output state N A→BðρRAÞ is two extendible for any input
state ρRA. Because of this property, antidegradable channels
have zero asymptotic quantum capacity [17,45]. Theorem 3
implies the following bound for the nonasymptotic case:
Corollary 1: Fix ε ∈ ½0; 1=2Þ. The following bound

holds for any ðn;M; εÞ quantum communication
protocol employing n uses of an antidegradable channel
N interleaved by two-extendible channels: ð1=nÞlog2M ≤
ð1=nÞlog2(1=ð1 − 2εÞ).

We conclude from the above inequality that, for an
antidegradable channel, there is a strong limitation on its
ability to generate entanglement whenever the error param-
eter ε < 1

2
, as is usually desired for applications in quantum

computation. We also remark that the bound above is
tighter than related bounds given in Ref. [42], and fur-
thermore, the bound applies to quantum communication
protocols assisted by interleaved two-extendible channels,
which were not considered in Ref. [42].
Limitations on quantum devices.—In practice, the evo-

lution effected by quantum processors is never a perfect
unitary process. There is always some undesirable inter-
action with the environment, the latter of which is inac-
cessible to the processor. Furthermore, there are practical
limitations on the ability to construct perfect unitary gates
[46]. The depolarizing and erasure channels are two classes
of noisy models for qubit quantum processors that are
widely considered (see Refs. [47–49]).
Both families of channels mentioned above are covariant

channels [50]; i.e., these channels are covariant with respect
to a group G with representations given by a unitary one
design. Thus, these channels can be simulated using 1W-
LOCC with the Choi states as the resource states [51],
(Sec. VII). Using this symmetry and the monotonicity of
the unextendible generalized divergence under 1W-LOCC,
we conclude that the optimal input state to a covariant
channel N , with respect to the upper bound in Theorem 2,
is a maximally entangled state ΦRA. Also, for any ðn;M; εÞ
quantum communication protocol conducted over a covar-
iant channel and assisted by any k-extendible channel,

the optimal input state is Φ⊗n
RA and QðkÞ

II ðN A→B; n; εÞ ¼
QðkÞ

I ðN A→B; n; εÞ; i.e., an upper bound on nonasymptotic

quantum capacity QðkÞ
II is given by Theorem 2.

A qubit depolarizing channel acts on an input state ρ as
Dp

A→BðρÞ ¼ ð1−pÞρþ ðp=3ÞðXρXþ YρY þZρZÞ, where
p ∈ ½0; 1� is the depolarizing parameter, and X, Y, and Z are
Pauli operators. The best known upper bound on the
aysmptotic quantum capacity of this channel for values
of p ∈ ½0; 1

4
Þ was recently derived in Refs. [52,53], and this

channel has zero asymptotic quantum capacity for p ∈
½1
4
; 1� [54,55].
With the goal of bounding the nonasymptotic quantum

capacity of Dp, we make a particular choice of the k-
extendible state for Eε

k (which need not be optimal) to be a

tensor power of the isotropic states σðt;2ÞAB , which is similar to
what was done in Ref. [3]. The inequality in Theorem 2
then reduces to

1

n
log2M ≤

1

n
log2

�
1 −

1

k

�
−
1

n
log2

�
fðε; p; tÞ − 1

k

�
; ð6Þ

where fðε; p; tÞ ¼ 2−D
ε
hðf1−p;pg⊗nkft;1−tg⊗nÞ and f1 − p; pg

denotes a Bernoulli distribution. The optimal measurement
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(Neyman-Pearson test) for the resulting hypothesis testing
relative entropy between Bernoulli distributions is then
well known [56] (see also Ref. [57]), giving an explicit
upper bound on the rate ð1=nÞlog2M. Figure 1 compares
various upper bounds on the number of qubits that can be
reliably transmitted over n uses of the depolarizing channel.
The bounds plotted are the ones derived from Theorem 2
(labeled “KDWW”), as well as two other known upper
bounds on nonasymptotic quantum capacities [3,4]. The
figure demonstrates that the bounds coming from the
resource theory of unextendibility are significantly tighter
than those from Refs. [3,4]. Note that Eq. (6) converges to
the upper bound from Refs. [3,58] in the limit k → ∞.
A qubit erasure channel acts on an input state ρ as

Ep
A→BðρAÞ ¼ ð1 − pÞρB þ pjeihejB [16], where p ∈ ½0; 1�

is the erasure probability, and the erasure state jeihej is
orthogonal to the input Hilbert space. We employ the
symmetries of the erasure channel to make a particular
choice of the k-extendible state for Eε

k. Theorem 2 gives
upper bounds on the number of qubits that can be reliably
transmitted over n uses of the erasure channel. The bounds
that we obtain are not necessarily optimal, but they still are
significantly tighter than those from Ref. [3]. See Fig. 2.
Discussion.—In this Letter, we developed the resource

theory of unextendibility and discussed limits that it places
on the performance of finite-sized quantum processors. The
free states in this resource theory are k-extendible states,
and the free channels are the k-extendible channels. We
determined nonasymptotic upper bounds on the rate at
which qubits can be transmitted over a finite number of
uses of a given quantum channel. The bounds coming from
the resource theory of unextendibility are significantly
tighter than those in Refs. [3,4] for depolarizing and
erasure channels.
It would be interesting to explore the resource theory of

unextendibility further. One plausible direction would be to
use this resource theory to obtain nonasymptotic converse

bounds on the entanglement distillation rate of bipartite
quantum interactions and compare with the bounds
obtained in Refs. [59,60]. Another direction is to analyze
the bounds in Theorem 2 for other noise models that are
practically relevant. Finally, it remains open to link the
bounds developed here with the open problem of finding a
strong converse for the quantum capacity of degradable
channels [42]. To solve that problem, recall that one
contribution of Ref. [42] was to reduce the question of
the strong converse of degradable channels to that of
establishing the strong converse for symmetric channels.
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Note added.—Recently we noticed the related work of
Ref. [61], which like our work uses extendibility to address
entanglement distillation, and which presents results that
are complementary to ours.
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