
 

Deterministic Generation of Large-Scale Entangled Photonic Cluster State from
Interacting Solid State Emitters

Mercedes Gimeno-Segovia,1,2 Terry Rudolph,2 and Sophia E. Economou3,*
1Quantum Engineering Technology Labs, H. H. Wills Physics Laboratory and Department of Electrical

and Electronic Engineering, University of Bristol, BS8 1FD, United Kingdom
2Department of Physics, Imperial College London, London SW7 2AZ, United Kingdom

3Department of Physics, Virginia Tech, Blacksburg Virginia 24061, USA

(Received 8 January 2018; published 12 August 2019)

The ability to create large highly entangled “cluster” states is crucial for measurement-based quantum
computing. We show that deterministic multiphoton entanglement can be created from coupled solid state
quantum emitters without the need for any two-qubit gates and regardless of whether the emitters are
identical. In particular, we present a general method for controlled entanglement creation by making direct
use of the always-on exchange interaction, in combination with single-qubit operations. This is used to
provide a recipe for the generation of two-dimensional, cluster-state entangled photons that can be carried
out with existing experimental capabilities in quantum dots.
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The cluster state quantum computing paradigm is
believed to be the most feasible approach for photonic
quantum computing. In this approach, the difficulty of
entanglement creation between photons is shifted to the
upfront creation of a highly entangled multiqubit cluster
state [1]. To date, photonic cluster states have been created
by passing parametrically down-converted pairs of
entangled photons through linear optic elements and sub-
sequentmeasurement of a photon. This process is inherently
probabilistic, and as a result creating a cluster state larger
than a few photons is a formidable task [2]. In previous
theoretical work it was shown [3] that a periodically pumped
quantum dot (QD) can produce a cluster state string of
photons. Very recently, there has been an experimental
breakthrough materializing this deterministic approach and
generating a one-dimensional cluster state [4]. However for
applications, larger dimensional graph states are needed.
To that end, a proposal [5] generalized the scheme ofRef. [3]
to a pair of QDs, introducing the idea that entangled emitters
can emit entangled photons. The main challenges with that
approach are that it requires the application of experimen-
tally demanding two-qubit entangling gates between the
emitters, and that it assumes that the twoQDs do not interact
in the absence of optical pulses. Although there are ongoing
efforts to demonstrate this idea, these issues make the
experiments challenging. The recent experimental progress
of Ref. [4] makes a practical protocol to generate a higher
dimensional cluster state with existing resources a particu-
larly timely topic. In addition to quantum computing, the
deterministic creation of large-scale cluster stateswould also
impact quantum communications [6,7].
Here we present a deterministic protocol for generating

two-dimensional photonic cluster states which requires no

externally driven two-qubit gates and which allows for, and
in fact makes crucial use of, an always-on coupling
between emitters. The necessary entanglement is built up
by free evolution and the photons are generated in an
entangled state through optical pumping of the emitters.
For QDs it is the always-on exchange interaction between
the spins that provides entanglement. Remarkably, we
show that with carefully chosen pulse sequences this
entanglement is sufficient to generate a cluster state when
combined with single-qubit gates already demonstrated in
experiments. We provide the pulse sequences that imple-
ment the required evolution for two distinct cases, emitters
with (i) equal and (ii) unequal Zeeman splittings.
While the scheme we describe is applicable to any pair of

emitters coupled with Heisenberg type interaction, we
focus on QDs, because they are very efficient emitters,
and the coupled-QD system has been studied and under-
stood very well experimentally [8–11]. We consider a pair
of stacked epitaxial QDs with a thin enough barrier in
between such that they are tunnel coupled. A bias voltage
controllably loads single carriers (electrons or holes) into
each QD. We consider the bias regime where each QD
contains a single electron. The electrons can virtually
tunnel into the opposite QD, and thus there is an effective
exchange interaction between them (Fig. 1). Recent exper-
imental advances based on this system demonstrated ultra-
fast coherent control, including single spin rotations and
entanglement control [11].
In previous work [5], we showed that to generate a

photonic cluster state the required evolution of the two
emitters should have the form Utarget ¼ czðA ⊗ AÞ, where
CZ is the conditional-Z gate between the two spins, given
by the matrix diagð1; 1; 1;−1Þ and A is either the
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Hadamard gate, H, or an equivalent gate, e.g., a π=2
rotation about an axis in the xy plane. Successive appli-
cations of Utarget, each followed by optical excitation and
spontaneous photon emission results in a two-dimensional
ladder of entangled cluster state photons. In Ref. [5] the
suggested CZ gate was implemented optically by exploiting
an electron-hole exchange interaction [12] in the excited
state and the two QDs were assumed completely decoupled
in their ground states.
The growth axis (z axis) of the two QDs is a preferred

direction along which the symmetry is lowered and which
also coincides with the laser propagation direction. Because
of the broken symmetry along z, there are optical polari-
zation selection rules associated with that axis. As a result,
the most straightforward operations to implement are
initialization, measurement, and spin rotations about z
[13,14]. This is due to the fact that polarization alone
provides selectivity between spin states along �z, elimi-
nating the need for frequency selectivity which would
necessitate longer pulses. We consider a magnetic field B,
which for simplicity we fix perpendicular to the z axis,
defining the x axis.
In practice, two-spin experiments [11] are conducted in a

regime where the tunnel coupling in the ground state is
strong, resulting in an always-on interaction between the
spins, while the excited states are significantly detuned,
making the interdot interaction in the excited state practi-
cally zero. The Hamiltonian in the absence of pulses is
H0 ¼ Js1s2 þ ω1s1x þ ω2s2x, where ωj ¼ gjB is the
Zeeman frequency for dot j, J is the exchange interaction
strength, and sij is the spin matrix of qubit i along the axis
j. In this regime, single-spin operations, in particular
measurement and rotations about z, are simple to imple-
ment and have been demonstrated. The relevant QD levels

are shown in Fig. 1. The ground states have one excess
electron per QD in the conduction band; the excited states
have an electron in one QD and a trion (two electrons in a
singlet in the conduction band and a hole in the valence
band) in the other. There is generally flexibility with
engineering or tuning QD parameters. The exchange
interaction J is determined by the overlap of the electronic
wave functions in the two QDs; it can be modified by
changing the barrier height between the QDs [8–10].
Reference [10] in particular studies the properties of doubly
charged coupled QD pairs, which are the focus here.
The objective here is to generate a 2D cluster state using

only the always-on exchange interaction in combination
with single qubit operations, elements that are attainable
with existing experimental capabilities [11]. Different QDs
will generally have different g factors. There is correlation
between the value of the g factor and the size and
composition of the QD and thus some control can be
achieved on this value during growth. Given this flexibility,
and the possibility that the g factors of a stacked QD pair
may not be identical, we examine separately the equal and
unequal Zeeman splitting case. The symmetry of the
problem is different in each case, resulting in evolution
operators of distinct symmetries and thus different pulse
sequences. In each case we decompose the evolution
operator using the Cartan decomposition [15] into a
product of single-spin operations and purely two-spin
operations. This allows us to identify the parameter regime
that maximizes the entanglement generated between the
two spins and to isolate the purely single-spin part of the
evolution, which may be used or may need to be compen-
sated with single-qubit gates.
Equal Zeeman frequencies.—In this case the evolution

operator can be decomposed into the form

Ueq ¼ ðe−iωtsx ⊗ e−iωtsxÞe−iJts1·s2 : ð1Þ

The purely two-spin operator in this equation comes from
the exchange interaction. It is well known that Heisenberg
exchange interaction yields an entangling gate, the so-
called square root of SWAP, Uss. After evolution time
t ¼ π=ð2JÞ≡ τ1, Ueq is equivalent to Uss up to single-
qubit rotations and is thus maximally entangling:

Ume
eq ¼ ðe−iðπω=2JÞsx ⊗ e−iðπω=2JÞsxÞe−iðπ=2Þs1·s2 ;

≡ ðe−iðπω=2JÞsx ⊗ e−iðπω=2JÞsxÞUss: ð2Þ

This evolution operator can be used to generate the target
gate Utarget ¼ czðA ⊗ AÞ in the case where A is a π=2
rotation about x. To see this, first express CZ in terms ofUss
(up to a global phase):

cz ¼ ðe−iðπ=2Þsz ⊗ eiðπ=2ÞszÞUssð1 ⊗ e−iπszÞUss: ð3Þ

The target gate is

1+ 2

J

J 1+ 2

FIG. 1. Energy levels of QDs with always-on spin exchange.
The difference between the optical transitions in the two
QDs is Δ ≫ J. The two middle states in the ground
state manifold are not energy eigenstates; they are coupled by
J, as indicated by the arrow.
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Utarget ¼ czðe−iðπ=2Þsx ⊗ e−iðπ=2ÞsxÞ: ð4Þ

Using Eqs. (2)–(4) we have

Utarget ¼ ðe−iðπ=2Þsz ⊗ eiðπ=2ÞszÞðe−iðπω=2JÞsx ⊗ e−iðπω=2JÞsxÞ
×Ume

eq ð1 ⊗ e−iπszÞðe−iðπ=2Þ½ðω=JÞþ1�sx

⊗ e−iðπ=2Þ½ðω=JÞþ1�sxÞUme
eq :

Thus, for equal Zeeman frequencies, we may generate the
target gate using two sets of single-qubit gates interspersed
with periods of free evolution.
Unequal Zeeman frequencies.— The unequal Zeeman

splitting case is somewhat more involved, as the symmetry
of the system is lower. As a result, the evolution operator
does not have a simple decomposition as in the equal
Zeeman case above. The evolution operator in the product
spin basis is symmetric, with u24 ¼ u13, u33 ¼ u22, and
u44 ¼ u11. The expressions for the matrix elements are
in [16].
A key difference from the equal Zeeman case is that the

condition for maximal entanglement, in addition to J, also
depends on ω1, ω2. When

t ¼ 2nπ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

J2 þ ðω1 − ω2Þ2
p ¼ ð2mþ 1Þπ

J
≡ τ2 ð5Þ

with n,m positive integers, the free evolution amounts to an
Ising gate up to single qubit operations:

Ume
uneq ¼ ðeiϕsx ⊗ eiϕsxÞe−iπsx⊗sx ; ð6Þ

with

ϕ ¼ � π

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4n2 − ð2mþ 1Þ2
q ðω1 þ ω2Þ

jω1 − ω2j
� kπ; ð7Þ

with k integer from which we obtain the constraint

n > j1þ 2mj=2: ð8Þ

Condition (5) requires choosing the integers n and m such
that the values of ω1, ω2, and J fall in a physical range.
To construct the sequence that will give us the target

evolution we make an ansatz using single spin rotations
about the z and the x axes in addition to the maximally
entangling free evolution Ume

uneq. In fact we notice that the
square of Ume

uneq gives a separable evolution of the two spins
amounting to rotations about the x axis for both spins. This
is a resource we also use as it will provide additional x
rotations without the need of external pulses. We equate our
ansatz sequence

Uans ¼ eiαðeiϕz2sz ⊗ eiϕz2szÞðUme
uneqÞ2

× ðeiϕxsx ⊗ eiϕxsxÞðeiϕz1sz ⊗ eiϕz1szÞUme
uneq;

to the target gate, czðH ⊗ HÞ, and examine whether this
equation has a general solution and in that case determine
the angles ϕz1, ϕz2, ϕx. Multiplying both sides on the
right by ðH ⊗ HÞ and inserting the identity before the
entangling part of Ume

uneq in the form ðH ⊗ HÞ2 we
notice that we can introduce CZ on the left-hand side,
since ðH ⊗ HÞeiπsx⊗sxðH ⊗ HÞ is proportional to CZ up to
single-qubit rotations. We thus reduce the problem to a
single spin equation:

eiszϕz2eisxð2ϕ−πÞeisxϕxeiszϕz1eisxϕHeiszð−π=2Þ ¼ 1: ð9Þ

In the middle of the expression in Eq. (9) the rotations
about the x axis are left separate to emphasize that one
originates from free evolution while the other one is
implemented by external fields. The solution of Eq. (9) is

ϕz1 ¼
π

2
; ϕz2 ¼ π −ϕ; ϕx ¼

3π

2
− 2ϕ; α¼ 5π

4
:

We thus find that the overhead for generating each pair of
entangled photons is two single-qubit z rotations and a
single-qubit x rotation. The protocols for generating the
cluster states for equal and unequal Zeeman frequencies are
shown in Fig. 2.
Implementing the single-qubit x rotations.—For the x

rotations we have several options: using longer pulses, i.e.,
spectral selectivity; combining free evolution with z rota-
tions; specially engineering or selecting QD parameters to
simplify the evolution. Because our primary goal is to
find protocols based on experimentally demonstrated

(a)

(b)

(c)

FIG. 2. (a) Circuit generating entangled photons from QDs,
with the spin-spin gateG shown for (b) equal Zeeman frequencies
and (c) unequal Zeeman frequencies.
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capabilities, we will focus on creating the x rotation by
combining z rotations and free evolution. Below we discuss
this approach in detail both for the equal and the unequal
Zeeman frequency cases as applicable.
Free evolution for appropriate time interval tx (for the

equal Zeeman case, tx ¼ 2π=J and for the unequal
tx ¼ 4nπ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

J2 þ ðω1 − ω2Þ2
p

) yields an x rotation by angle
χ for each qubit [for the equal Zeeman case, χ ¼ −2πω=J
and for the unequal χ ¼ 2ϕ, with ϕ in Eq. (7)]. Combining
this with the ansatz

eiφsx ¼ e−iξszeiχsxe−iψszeiχsxe−iξsz ; ð10Þ

which is satisfied for certain ranges of χ, limiting the ratio
of the physical parameters to certain values, allows us to
tune the x-rotation angle φ by adjusting the z-rotation
angles ξ and ψ . Out of the physically viable ranges for the
system parameters (ω and J), in the equal-Zeeman case we
select the large range ω ∈ ½0.58J; 0.87J�, a condition that
can be achieved by tuning the magnetic field. In the
unequal Zeeman case, Eq. (10) gives a condition on the
ratio of the g factors of the two emitters. The relevant range
here is much narrower, so an alternative approach may be
more desirable. By selecting parameters appropriately, we
can avoid the x rotation altogether in the pulse sequence
forming Uans. By combining the two middle x rotations in
Eq. (9) we see that in the special case when ϕ ¼ 3π=4 the
externally induced x rotation is not needed (ϕx ¼ 0). This
condition gives us a relation between the Zeeman frequen-
cies of the two QDs through the constraint

ω1 ¼
γ þ 1

γ − 1
ω2; γ ≡ �3=2� 2k

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4n2 − ð2mþ 1Þ2
p ; ð11Þ

with k a positive integer. A large number of solutions can be
obtained by varying n, m, k. More importantly, a reason-
ably large number of solutions persists for physically
relevant parameter regimes, ω1=ω2 ∈ ð1; 1.2Þ. For exam-
ple, n ¼ 14, m ¼ 13, k ¼ 45 gives γ ¼ 183=ð2 ffiffiffiffiffi

55
p Þ so

that ω1=ω2 ≈ 1.18, which should be achievable experimen-
tally, e.g., by polarizing the nuclear spins [17–19] in one
QD to obtain an effective local magnetic field through the
Overhauser term of the hyperfine interaction, Izsz or via the
use of micromagnets [20,21], which would provide a more
deterministic approach.
Error analysis.—We now address how well the sequen-

ces presented above perform in the presence of errors, such
as uncertainty in the system parameters. In the equal
Zeeman case, we consider an error, ω → ωð1þ ηÞ and
plot the fidelity of the pulse sequence of Eq. (10), defined
as F ¼ jTrðUU†

idealÞ=4j2, as a function of the ratio ω=J
for the allowed regime of interest and as a function of η,
Fig. 3(a). We find that the fidelity is robust, even for high
percentage of error in ω. The remaining operations do not

depend on ω, so its fluctuations will not affect other parts of
the full sequence.
In the unequal Zeeman case, we consider an error in the

Zeeman ratio discussed above, ω1=ω2 ¼ 1.18þ η. The
fidelity is shown in Fig. 3(b) and it depends more
sensitively on the error. Such an error in η could occur
from fluctuations in the Overhauser field, which has typical
widths on the order of 10s of MHz [22,23]. Narrowing the
nuclear spin distribution [22,23] to 1 MHz (corresponding
to η ∼ 0.001) would guarantee high fidelity. Despite the
higher sensitivity to error, this regime has the advantage of
not requiring a rotation about x at all.
The z gates are assumed to be instantaneous compared to

the other timescales in the system. This is an excellent
approximation, as faster pulses lead to a polarization
selection rule for circularly polarized light, which in turn
leads to higher fidelities [24].
Additional sources of error are the finite trion lifetime

and the finite spin coherence time. The implicit assumption
has been that the QDs emit photons immediately after
excitation, which requires that the spontaneous emission
time be much faster than the Larmor precession periods
and the timescale of the exchange interaction. In addition,
the total pulse sequence should be much shorter than the
spin coherence time so that a large enough cluster can be
generated before the spin decoheres. The spontaneous
emission time in free space is ∼1 ns, and it can be made
faster through the Purcell effect by embedding the QD into
a cavity [25–27]. Then an emission timescale on the order
of 100 ps can be achieved [25,26]. Importantly, coupling to
a cavity still allows for optical spin rotations by using off-
resonant pulses [28]. Reference [3] showed that the ratio of
the Zeeman frequency over the spontaneous emission rate
can be as high as 10%–20% with reasonably low errors.
This constrains the Larmor period and exchange interaction
timescale to be on the order of 10 ns (1 ns) or longer for free
space (cavity-mediated) emission. The sequences of free
evolution and pulses have a duration roughly given by
several times π=J. Taking J ∼ ωj ∼ 2π × 1 GHz, each
period should be ∼20 ns. The coherence time of the
electron spin T2 is several μs in free-induction decay
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FIG. 3. Fidelity of pulse sequence (a) that provides the x
rotations in the equal Zeeman case as a function of the Zeeman
frequency in units of J and the percentage error η in Zeeman
frequency and (b) for the unequal Zeeman case as a function of
the error η in the ratio of the Zeeman frequencies.
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and can be extended using decoupling sequences. Based on
these values we estimate we can obtain a cluster state of size
at least 2 × 100, an order of magnitude larger than the state
of the art.
In conclusion, we developed a method to generate a large

2D entangled photonic cluster state using coupled emitters.
We showed in detail how this would work in a QD
molecule with current experimental capabilities. Our
approach can be adapted to other systems, including point
defects, trapped ions, etc. Adding emitters to the system
would increase the cluster state beyond two photons in the
vertical direction. This could be done with a chain of
emitters and decoupling to select at any one time coupling
between only two neighboring emitters.
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