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Quasiperiodic systems offer an appealing intermediate between long-range ordered and genuine
disordered systems, with unusual critical properties. One-dimensional models that break the so-called
self-dual symmetry usually display a mobility edge, similarly as truly disordered systems in a dimension
strictly higher than two. Here, we determine the critical localization properties of single particles in shallow,
one-dimensional, quasiperiodic models and relate them to the fractal character of the energy spectrum. On
the one hand, we determine the mobility edge and show that it separates the localized and extended phases,
with no intermediate phase. On the other hand, we determine the critical potential amplitude and find the
universal critical exponent ν ≃ 1=3. We also study the spectral Hausdorff dimension and show that it is
nonuniversal but always smaller than unity, hence showing that the spectrum is nowhere dense. Finally,
applications to ongoing studies of Anderson localization, Bose-glass physics, and many-body localization
in ultracold atoms are discussed.
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In a homogeneous system, all the single-particle wave
functions are extended. In contrast, they may be exponen-
tially localized in the presence of disorder owing to the
breaking of translational invariance [1]. This effect, known
as Anderson localization, is a fundamental, ubiquitous
phenomenon at the origin of metal-insulator transitions
in many systems [2]. Quasiperiodic models hold a special
place, for they are at the interface of long-range ordered
and fully disordered systems. They describe a variety of
systems, including quasicrystals [3], electronic materials in
orthogonal magnetic fields [4–6] or with incommensurate
charge-density waves [7], Fibonacci heterostructures [8],
photonic crystals [9], and cavity polaritons [10]. They also
proved pivotal in quantum gases [11–13] to investigate
Anderson localization of matter waves [14–16] and interact-
ing Bose gases [17], the emergence of long-range quasi-
periodic order [18–20], Bose-glass physics [14,15,21–24],
and many-body localization [25–28].
Anderson localization in quasiperiodic systems, how-

ever, significantly differs from its counterpart in truly
disordered systems. While in a disordered system a phase
transition between the Anderson-localized and extended
phases occurs only in a dimension strictly higher than 2
[29], it may occur in one-dimensional (1D) quasiperiodic
systems. The most celebrated example is the Aubry-André
(AA) Hamiltonian, obtained from the tight-binding model
generated by a strong lattice, by adding a second, weak,
incommensurate lattice. In the AA model, the localization
transition occurs at a critical value of the quasiperiodic
potential, irrespective of the particle energy [30]. This
behavior results from a special symmetry, known as self-
duality. When the latter is broken, an energy mobility edge
(ME), i.e., a critical energy separating localized and

extended states, generally appears, as demonstrated in a
variety of models [31–38]. One of the simplest examples is
obtained by using two incommensurate lattices of compa-
rable amplitudes. This model attracts significant attention
in ultracold-atom systems [39,40]. They have been used to
study many-body localization in a 1D system exhibiting a
single-particle ME [28] and may serve to overcome finite-
temperature issues in the observation of the still elusive
Bose-glass phase [24,41] (see below). Recently, the locali-
zation properties and the ME of the single-particle problem
have been studied both theoretically [40] and experi-
mentally [42]. However, important critical properties of
this model are still unknown. For instance, whether an
intermediate phase appears in between the localized and
extended phases remains unclear.
In this work, we study the critical properties and the

fractality of noninteracting particles in shallow quasiperi-
odic potentials. We consider various models, including
bichromatic and trichromatic lattices with balanced or
imbalanced amplitudes. In all cases, above a certain critical
amplitude of the quasiperiodic potential Vc, we find a
finite energy ME. It marks a sharp transition between the
localized and extended phases with no intermediate phase.
The ME is always found in one of the energy gaps, which
are dense. We show that this is a direct consequence of the
fractal character of the energy spectrum, which is nowhere
dense. We compute the critical Hausdorff dimension and
find values significantly different from that found for the
AA model, showing that it is a nonuniversal quantity.
Moreover, we determine accurate values of the critical
quasiperiodic amplitude Vc from the scaling of the inverse
participation ratio. While Vc depends on the model, we find
the universal critical exponent ν ≃ 1=3.
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Model and approach.—The single-particle wave
functions ψðxÞ are found by solving numerically the
continuous-space, 1D Schrödinger equation:

EψðxÞ ¼ −
ℏ2

2m
d2ψ
dx2

þ VðxÞψðxÞ; ð1Þ

using exact diagonalization for Dirichlet absorbing boun-
dary conditions: ψnð0Þ ¼ ψnðLÞ ¼ 0. Here, E and m are
the particle energy and mass, respectively, L is the system
size, and ℏ is the reduced Planck constant. In the first part
of this work, we consider the bichromatic lattice potential

VðxÞ ¼ V1

2
cos ð2k1xÞ þ

V2

2
cos ð2k2xþ φÞ; ð2Þ

where the quantities Vj (j ¼ 1, 2) are the amplitudes of two
periodic potentials of incommensurate spatial periods π=kj
with k2=k1 ¼ r, an irrational number. The relative phase
shift φ is essentially irrelevant, except for some values
which induce special symmetries. In the following, we use
r ¼ ð ffiffiffi

5
p

− 1Þ=2 and φ ¼ 4, which avoids such cases. We
then characterize the localization of an eigenstate ψ using
the second-order inverse participation ratio (IPR) [43]:

IPR ¼
R
dxjψnðxÞj4

½R dxjψnðxÞj2�2
: ð3Þ

It generally scales as IPR ∼ 1=Lτ, with τ ¼ 1 for an
extended state and τ ¼ 0 for a localized state.
Mobility edge.—We first focus on the balanced bichro-

matic lattice, Eq. (2) with V1 ¼ V2 ≡ V. Note that this
model cannot be mapped onto the AA model, even for
V ≫ Er, where Er ¼ ℏ2k21=2m is the recoil energy, since
none of the periodic components of VðxÞ dominates the
other. Figure 1(a) shows the IPR versus the particle energy
E and the potential amplitude V for a large system, L ¼
100a with a ¼ π=k1 the spatial period of the first periodic
potential. The results indicate the onset of localization
(corresponding to large values of the IPR) at a low particle
energy and high potential amplitude, consistently with the
existence of a V-dependent energy ME Ec. This is con-
firmed by the behaviour of the wave functions, which turn
from exponentially localized at low energy [Fig. 1(b)] to
extended at high energy [Fig. 1(c)]. These results are
characteristic of 1D quasiperiodic models that break the
AA self-duality condition [34,39,40]. The IPR, however,
varies smoothly with the particle energy and is not
sufficient to distinguish extended states from states local-
ized on a large scale.
To determine the ME precisely, we perform a systematic

finite-size scaling analysis of the IPR and compute the
quantity

τðLÞ≡ −d log IPR=d logL: ð4Þ

For all values of V and E, and for large enough system
lengths, we find either τ ¼ 0� 0.2 or τ ¼ 1� 0.2 [44]. It
shows the existence of a sharp localization transition (ME)
between localized states (τ ≃ 0) at a low energy and
extended states (τ ≃ 1) at a high energy. No intermediate
behavior is found in the thermodynamic limit. The ME Ec
is then accurately determined as the energy of the transition
point between the two values.
The results are plotted in Fig. 1(a) (black dots). In all

cases, we find that the ME is in an energy gap. While it
is clearly seen for some potential amplitudes (e.g., for
5.2≲ V=Er ≲ 8.5), it is more elusive for some other values
(e.g., for V=Er ≳ 8.5); see Fig. 1(a). In the latter case,
however, it can be seen by enlarging the figure [44]. More
fundamentally, it is a direct consequence of the fractal
behavior of the energy spectrum, as we discuss now.
Fractality of the energy spectrum.—To characterize

the energy spectrum, we first compute the integrated
density of states (IDOS) per unit lattice spacing nϵðEÞ,
i.e., the number of eigenstates in the energy range ½E − ϵ=2;
Eþ ϵ=2�, divided by L=a. Figures 2(a) and 2(b) show the
quantity nϵðEÞ=ϵ in the vicinity of the ME for two values of
the quasiperiodic amplitude V and several energy resolu-
tions ϵ [45]. For any value of ϵ, the IDOS displays energy
bands separated by gaps. However, when the resolution ϵ
decreases (corresponding to increasingly dark lines on the
plots), new gaps appear inside the bands, while the existing
gaps are stable. It signals that the spectrum is nowhere
dense while the gaps are dense in the thermodynamic
limit. In particular, the density of states limϵ→0þnϵðEÞ=ϵ is
singular. Moreover, the ME is always found in a gap for a
sufficiently resolved spectrum; see Figs. 2(a) and 2(b). Note
that this is not a finite-size effect: For all the results shown
here, we have used large enough systems so that each ϵ-
resolved band contains at least 10–15 states. In addition, we
have checked that the IDOS is stable against further

FIG. 1. Localization transition for the balanced bichromatic
potential, Eq. (2) with V1 ¼ V2 ≡ V. (a) IPR versus the particle
energy E and the lattice amplitude V for the system size
L ¼ 100a. Localized states correspond to large values of the
IPR (blue) and extended to vanishingly small values (yellow).
The ME, found from a finite-L scaling analysis of the IPR, is
shown as black points. (b),(c) Density profiles of two eigenstates
in the localized and extended regimes, respectively. Here, the two
states correspond to energies right below and right above the ME
at V ¼ 2Er.
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increasing the system’s length [44]. The opening of an
infinite series of minigaps is characteristic of a fractal
behavior.
So far, the fractal character of the energy spectrum of 1D

incommensurate systems has been studied for discrete
models, such as the Fibonacci chain and the AA model
[6,10,46–49]. It was shown that in these cases the spectrum
is homeomorphic to a Cantor set. To study fractality in our
continuous model, we use a direct box-counting analysis
[50,51]: We introduce the energy-box counting number:

NBðϵÞ ¼ lim
q→0þ

Z
E2

E1

dE
ϵ
½nϵðEÞ�q; ð5Þ

for some energy range ½E1; E2�. In the limit q → 0þ, the
quantity ½nϵðEÞ�q approaches 1 if nϵðEÞ ≠ 0 and 0 if
nϵðEÞ ¼ 0. Therefore, the quantity limq→0þ½nϵðEÞ�q con-
tributes 1 in the boxes of width ϵ containing at least one
state and vanishes in the empty boxes. The sum of these
contributions, NBðϵÞ, counts the minimal number of ϵ-wide
boxes necessary to cover all the states within the energy
range ½E1; E2�. The scaling of NBðϵÞ versus the energy
resolution ϵ,

NBðϵÞ ∼ ϵ−DH ; ð6Þ

defines the Hausdorff dimension DH of the energy spec-
trum. In all considered cases, we found a scaling consistent
with Eq. (6) with 0 < DH < 1. This is characteristic of a
nontrivial fractal behavior [52]. For instance, Figs. 2(c)

and 2(d) show NB versus ϵ in the vicinity of the MEs at
V ¼ 6Er and V ¼ 8.5Er for the energy ranges correspond-
ing to Figs. 2(a) and 2(b), respectively. We find a linear
scaling in the log-log scale, consistent with Eq. (6) and the
Hausdorff dimensions DH ¼ 0.72� 0.03 and DH ¼
0.76� 0.03, respectively. Both values are significantly
smaller than the geometrical dimension d¼1. Therefore,
the Lebesgue measure of the energy support vanishes,
and the spectrum is nowhere dense in the thermody-
namic limit.
Note that the Hausdorff dimension found above signifi-

cantly differs from that found in previous work at the
critical point of the AA model, DH ≃ 0.5 [47,48]. We
conclude that the spectral Hausdorff dimension is a
nonuniversal quantity. This is confirmed by further calcu-
lations we performed. For instance, in the AA limit of
our continuous model, V1 ≫ V2; Er, we recover DH ¼
0.507� 0.005 at the critical point. Conversely, we found
DH ¼ 0.605� 0.014 at the critical point of the balanced
lattice (see below).
Criticality.—We now turn to the critical localization

behavior. As shown in Fig. 1(a), a finite ME appears only
for a potential amplitudeV larger than some critical valueVc;
see also Ref. [34]. In Fig. 3(a), we plot the IPR of the ground
state (IPR0) versusV. The transition from the extended phase
(vanishingly small IPR) to the localized phase (finite IPR)
gets sharper when the system size increases and becomes
critical in the thermodynamic limit (see darker solid blue lines
in the main figure and the inset). Since the IPR scales as
IPR0 ∼ 1=L in the extended phase and as IPR0 ∼ 1 in the
localized phase, the critical amplitude can be found with a
high precision as the fixed point of IPR0 ×

ffiffiffiffiffiffi
La

p
when

increasing the system size L. It yields [44]

Vc=Er ≃ 1.112� 0.002: ð7Þ

FIG. 2. Fractal behavior of the energy spectrum. (a) shows
nϵðEÞ=ϵ in the vicinity of the ME at V ¼ 6.0Er for L ¼ 600a and
ϵ=Er ¼ 0.1 (light blue), 0.05 (blue), and 0.01 (dark blue).
(b) shows the same quantity for the ME at V ¼ 8.5Er for L ¼
1000a and ϵ=Er ¼ 0.1 (light blue), 0.03 (blue), and 0.003 (dark
blue). (c) and (d) show the energy-box counting numberNB versus
ϵ for the parameters of (a) and (b), respectively. The linear slopes in
the log-log scale are consistent with a fractal behavior [Eq. (6)]
with DH ¼ 0.72� 0.03 and DH ¼ 0.76� 0.03, respectively.

FIG. 3. Critical localization behavior. (a) Ground-state IPR
versus the quasiperiodic amplitude for the balanced bichromatic
lattice (solid lines). Inset: Magnification in the vicinity of the
critical point at Vc. Darker lines correspond to increasing system
sizes L=a ¼ 50 (light blue), 200 (blue), 1000 (dark blue),
and 10000 (black). The dashed green line corresponds to the
trichromatic lattice for L=a ¼ 10000. (b), (c) Ground-state IPR
versus V − Vc in the log-log scale for the bichromatic and
trichromatic lattices, respectively.
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Furthermore, this accurate value ofVc allows us to determine
the critical exponent of the transition. Plotting IPR0 versus
V − Vc in the log-log scale, we find a clear linear behavior for
sufficiently large systems, consistent with the power-law
scaling IPR0 ∼ ðV − VcÞν; see Fig. 3(b). Fitting the slope, we
find the critical exponent ν ≃ 0.327� 0.007. Note that for
V ≫ Vc, Er, the behavior of the IPR changes. The ground
state is no longer at criticality, and we find the scaling
IPR0 ∼ Vν0 with ν0 ≃ 0.258� 0.005. This is consistent with
the exponent 1=4 expected in the tight-binding limit [44].
Other quasiperiodic lattices and universality.—We now

extend our results to other quasiperiodic models. We first
consider the imbalanced bichromatic lattice, Eq. (2) with
V1 ≠ V2. In Fig. 4, we plot the ME versus the quasiperiodic
amplitudes V1 and V2. The dark region corresponds to
cases where the ME is absent. Its boundary yields the
critical line in the V1 − V2 plane. Note that Fig. 4 is not
symmetric by exchange of V1 and V2 even upon rescaling
the energies. This owes to the strong dependence of the
model on the incommensurate ratio r. We found that the
localization transition is universal, and the critical and
fractal properties discussed above for the balanced case
apply irrespectively to the relative amplitudes of the two
lattices, i.e., also for V1 ≠ V2 [44]. In particular, beyond
the critical line, the ME still marks a sharp transition
between exponentially localized and extended states, with
no intermediate phase. The energy spectrum is fractal, with
DH < 1, and thus nowhere dense. Moreover, for any value
of V1 up to values deep in the AA limit (50Er), we always
found IPR0 ∼ ðV2 − V2cÞν with ν ≃ 0.33� 0.02. The same
applies to the discrete AA model [44].
It is worth noting that the behavior of the IPR differs

from that of the Lyapunov exponent (inverse localization
length). The IPR is dominated by the core of the wave
function and characterizes, for instance, the short-range
interaction energy of two particles in a localized state [53].
In contrast, the Lyapunov exponent γ characterizes the

exponential tails of the wave functions, ψðxÞ ∼ expð−γjxjÞ,
and it is insensitive to the core. For nonpurely exponential
wave functions, which appear in our model [see, for
instance, Fig. 1(b) and Ref. [44] ], these two quantities
are not proportional. For instance, in the AA model, one
has γ ∼ lnðΔ=2JÞ, and, at the critical point Δ ¼ 2J, one
finds γ ∼ Δ=2J ∼ ðV2 − V2cÞβ with the Lyapunov critical
exponent β ¼ 1. This value differs from the IPR critical
exponent ν ≃ 1=3 found above.
We also considered the trichromatic lattice

VðxÞ ¼ V
2
½cos ð2k1xÞ þ cos ð2k2xþφÞ þ cos ð2k3xþφ0Þ�;

ð8Þ

with k3=k2 ¼ k2=k1 ¼ r, so that the three lattice spacings
are incommensurate to each other [note that k3=k1 ¼ r2 ¼
ð3 − ffiffiffi

5
p Þ=2 is an irrational number]. Performing the same

analysis as for the other models, we recover the same
universal features. In particular, the energy spectrum is
fractal and nowhere dense, and the mobility edge is always
in a gap. We find a finite critical amplitude Vc and the
critical behavior IPR0 ∼ ðV − VcÞν with ν≃0.327�0.007;
see Fig. 3(c). The only significant difference is that the
critical point for the trichromatic lattice, Vc=Er ≃ 0.400�
0.005, is smaller than for the bichromatic lattice; see
Fig. 3(a). In particular, the standard deviation of the
potential, ΔV, is a factor of about 2.27 smaller at the
critical point. This is consistent with the intuitive expect-
ation that it should vanish in the disordered case corre-
sponding to an infinite series of cosine components with
random phases [54,55].
Conclusion.—In summary, we have studied the critical

and fractal behavior for single particles in quasiperiodic
potentials. Our results shed light on models that have
become pivotal for Anderson [40,42] and many-body [28]
localization. We found that the ME is always in a gap and
separates localized and extended states, with no intermedi-
ate phase. We related this behavior to the fractality of the
energy spectrum and found that the Hausdorff dimension
is always smaller than unity but nonuniversal. In contrast,
we found the critical behavior IPR0 ∼ ðV − VcÞν with the
universal exponent ν ≃ 1=3. These predictions may be
confirmed in experiments similar to Ref. [42] using
energy-resolved state selection [56–58]. In parallel to
further theoretical studies, they may help answer questions
our results call. For instance, it would be interesting to
determine the physical origin of the critical exponent ν and
extend our study to higher dimensions. Another important
avenue would be to extend it to interacting models in
connection to many-body localization.
Our results may also pave the way to the observation of

the still elusive Bose-glass phase. So far, ultracold-atom
experiments have been performed in the AA limit, the
energy scale of which is the tunneling energy J [59]. The

FIG. 4. Mobility edge for the imbalanced bichromatic lattice,
Eq. (2) versus the amplitudes V1 and V2. The dark region
indicates the absence of a mobility edge, and its boundary the
localization critical line.
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latter is exponentially small in the main lattice amplitude
and of the order of the temperature. It suppresses coherence
and significantly alters superfluid-insulator transitions
[24,41]. In shallow quasiperiodic potentials, the energy
scale is, instead, the recoil energy Er, which is much higher
than the temperature. Temperature effects should thus be
negligible. For strong interactions, the 1D Bose gas can be
mapped onto an ideal Fermi gas, and the Bose-glass
transition is directly given by the ME we computed here.
It would be interesting to determine how the transition
evolves for weak interactions.
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