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Motivated by quantum resource theories, we introduce a notion of incompatibility for quantum
measurements relative to a reference basis. The notion arises by considering states diagonal in that basis
and investigating whether probability distributions associated with different quantum measurements can be
converted into one another by probabilistic postprocessing. The induced preorder over quantum
measurements is directly related to multivariate majorization and gives rise to families of monotones,
i.e., scalar quantifiers that preserve the ordering. For the case of orthogonal measurement we establish a
quantitative connection between incompatibility, quantum coherence and entropic uncertainty relations.
We generalize the construction to include arbitrary positive-operator-valued measurements and report
complete families of monotones.
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Introduction.—One of the cornerstones of quantum
theory is the concept of incompatibility between observables
[1]. A pair of quantum observables is deemed incompatible
if the corresponding self-adjoint operators fail to commute.
Operationally, incompatibility implies that there exist pure
quantum states for which it is impossible to simultaneously
predict with certainty the measurement outcomes of two
incompatible observables. Finite-dimensional observables
that share the same eigenbasis are fully compatible, while
any pair of observables associated with bases that are
mutually unbiased are maximally incompatible: certain
knowledge for the outcome of one assures complete ran-
domness for the possible outcomes of the other.
Incompatibility is famously captured through uncer-

tainty relations that may involve variances [2–4], entropies
[5–11] or other information-theoretic quantities [12–17]. A
quantitative description of incompatibility in quantum
mechanics was pursued recently, from the perspective of
state discrimination and quantum steering [18–26]. In this
approach, one of the central notions is that of a parent
measurement, i.e., one that can simulate the original one
through probabilistic postprocessing.
Quantum resource theories provide a framework to

systematically characterize and quantify quantum proper-
ties (for example, entanglement). There, such a property is
fully described by the conversion relations among states
under a class of quantum processes that, suitably chosen,
cannot enhance it [27]. The transformation relations among
quantum states can be mathematically described by a
preorder: if a state can be transformed into another under
the distinguished class of processes, then it lies “higher” in
the ordering [28]. In turn, the preorder induces a family of
scalar functions, called monotones, that cannot increase
under the allowed state transitions and therefore jointly
quantify the resourcefulness of states.

In this Letter, we introduce a notion of incompatibility of
quantum measurements relative to a reference basis by
means of a preorder. More specifically, considering states
that are diagonal in the reference basis, we investigate
whether the probability distributions associated with differ-
ent measurements can be transformed into one another, by
means of probabilistic postprocessing. The aforementioned
question of convertibility generates a preorder over quantum
measurements which, in turn, gives rise to families of scalar
functions that jointly quantify the introduced notion of
incompatibility relative to a basis. We first consider the
special case of orthogonal measurements in which the
ordering provides a quantitative, as well as conceptual,
connection between incompatibility, quantum coherence
and entropic uncertainty relations.We then extend to include
generalizedmeasurements andwe relate the resulting notion
to parent measurements.
Preliminaries.—Consider a nondegenerate observable A

over a finite dimensional Hilbert space H ≅ Cd with
spectral decomposition A ¼ P

d
i¼1 aiPi (we denote

Pi ≔ jiihij). The role of the eigenvalues ai is to label
the possible outcomes and, as long as they are distinct, this
role is unimportant from the point of view of the meas-
urement process, since the probability distribution pBðρÞ
with components ½pBðρÞ�i ≔ TrðPiρÞ (representing a meas-
urement of A in state ρ) only depends on the set of
projectors fPigi [29]. We will henceforth use the term
basis (always meaning orthonormal) to refer to a set of
rank-1 orthogonal projectors B ¼ fPigdi¼1, with

P
iPi ¼ I

[30]. A generalized measurement (POVM) is represented
by a set of operators F ¼ fFigi such that Fi ≥ 0 andP

iFi ¼ I. We associate with every basis B the real Abelian
algebra of observables AB generated by fPigi. The set of
bases over the Hilbert space is denoted by MðHÞ.
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Preorder and monotones.—The idea of deriving families
of scalar functions that quantify some feature (for instance,
the degree of uniformity of a probability distribution) by
invoking a preorder has its roots in the mathematical theory
of majorization [31]. Such a paradigm has been extensively
employed in quantum information in the context of
resource theories for quantifying features of quantum
systems, such as entanglement [32], coherence [33], and
out-of-equilibrium thermodynamics [34].
In this approach, one distinguishes a class of quantum

operations, deemed as “easy,” motivated by some practical
consideration. For example, in the case of entanglement,
the easy operations are local quantum operations between
two parties together with classical communication. This set
of maps induces a preorder “≥” in the set of quantum states,
defined by the allowed transitions under easy operations,
namely ρ ≥ σ if and only if there exists an easy operation E
such that σ ¼ EðρÞ. The binary relation induced is a
preorder since, by definition, the identity quantum channel
is always an easy operation and also the composition of
easy operations is again an easy operation. Moreover, ρ ≥ σ
should intuitively correspond in our example to a statement
like “ρ is more entangled than σ.” This quantification is
rigorously captured by the notion of monotones, i.e., scalar
functions f over states, nonincreasing under allowed state
transitions [ρ ≥ σ ⇒ fðρÞ ≥ fðσÞ]. Families of monotones
ffagα are said to form a complete set, if they sat-
isfy fαðρÞ ≥ fαðσÞ ∀ α ⇔ ρ ≥ σ.
A preorder over orthonormal bases.—Our goal is to

define a notion of incompatibility relative to a basis. Let us
begin with the case of orthogonal measurements. Consider
a basis B0 ¼ fPð0Þ

i gi and a state ρ0 ¼
P

ipiP
ð0Þ
i ∈ AB0

diagonal over it, described by the probability distribution p.
Given another basis B1 ¼ fPð1Þ

i gi, one can also associate
with ρ0 the probability distribution pB1

ðρ0Þ corresponding
to a measurement over B1. In fact, pB1

ðρ0Þ ¼ XðB1;B0Þp,
where XðB1;B0Þ denotes the bistochastic matrix [35] with
elements

½XðB1;B0Þ�ij ≔ TrðPð1Þ
i Pð0Þ

j Þ: ð1Þ

Moreover, the probability distribution pB1
ðρ0Þ is always

“more uniform” than p. This is precisely captured by the
majorization statement p ≻ pB1

ðρ0Þ that is true for any basis
B1 and follows directly from the bistochasticity of X [36].
Let us now introduce another measurement, over a basis

B2, such that there exists some bistochastic matrix M with

XðB2;B0Þ ¼ MXðB1;B0Þ: ð2Þ

This relation has a rather strong implication: for all
states ρ0 diagonal in B0, the distribution pB2

ðρ0Þ can be
obtained from pB1

ðρ0Þ through “uniforming” classical
postprocessing, represented by some bistochastic M which
is independent of the state.

Motivated by the above, if Eq. (2) holds, we declare that
“an orthogonal measurement over B1 is more compatible
than over B2, relative to states diagonal in B0.” We
introduce the following notation.
Definition 1.—We denote B1 ≻B0 B2 if and only if there

exists a bistochastic matrix M such that XðB2;B0Þ ¼
MXðB1;B0Þ.
The definition has the following immediate conse-

quences. (i) The binary relation ≻B0 over MðHÞ is a
preorder, i.e., B ≻B0 B ∀ B (reflexivity) and B1 ≻B0 B2,
B2 ≻B0 B3⇒ B1 ≻B0 B3 (transitivity). (ii) B0 ≻B0 B for all
bases B (“measurement over B0 is more compatible than
over any other basis”) (iii) B ≻B0 BMU for all bases B,
where BMU is any basis mutually unbiased to B0 (“meas-
urement over any basis is more compatible than over a
mutually unbiased one”).
The preorder ≻B0 is not in general a partial order, i.e.,

B1 ≻B0 B2 and B2 ≻B0 B1 do not necessarily imply
B1 ¼ B2. For example, any B1 and B2 that are unbiased
relative to B0 satisfy the aforementioned relations but can
be taken to be distinct.
The ordering (2) over matrices has been studied in the

context of multivariate majorization, called matrix majo-
rization [37]. There, A ≻ C for matrices A and C if there
exists a bistochastic B such that C ¼ BA. We now connect
the aforementioned preorder with quantum measurements.
≻B0 from nonselective measurements.—Definition 1 can

be operationally understood in terms of classical postpro-
cessing of probability distributions. Here, we show that the
ordering ≻B0 also admits a quantum operational interpre-
tation in terms of emulation of a nonselective measurement
via additional such measurements.
Any basis B gives rise to a corresponding dephasing or

measurement quantum map

DBðXÞ ≔
X
i

PiXPi: ð3Þ

The latter can be thought of as a nonselective orthogonal
measurement of any nondegenerate observable belonging
in AB, while a composition DBn

…DB1
represents the

quantum operation associated with n such successive
measurements [38].
We are now ready to state the result. The ordering B1 ≻B0

B2 holds if and only if, for any initial state diagonal in B0,
the output of a nonselective B2 measurement can be
emulated by a nonselective B1 measurement, followed
possibly by an additional sequence of measurements and
a unitary rotation. More specifically:
Proposition 1.—B1 ≻B0 B2 if and only if there exist a

unitary superoperator U and a (possibly trivial) sequence of
measurements fDB0

α
gα such that

DB2
DB0

¼ U
�Y

α

DB0
α

�
DB1

DB0
: ð4Þ

All proofs can be found in [41].
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The auxiliary sequence of measurements needed might
be, in fact, infinite. Equation (4) should be understood as
“kDB2

DB0
− U½QαDB0

α
�DB1

DB0
k can be made arbitrarily

small”; i.e., the state transformation of the rhs can approxi-
mate arbitrarily well the one of the lhs.
We now analyze the d ¼ 2 case, by invoking Proposition

1 together the usual Bloch ball representation of quantum
states ρ ¼ 1

2
ðI þ v · σÞ, where different bases are in one to

one correspondence with lines passing from the center. In
this representation, the action of DB1

on a state ρ coincides
with projecting v onto the B1 line while the action of U is
translated into an SOð3Þ rotation. Clearly, Eq. (4) can be
satisfied (in fact, by means of a single DB0

1
) if and only if

θ1 ≤ θ2; here θi is the (acute) angle between the lines
corresponding to B0 and Bi. In particular, for d ¼ 2 the
ordering ≻B0 is a total preorder, but not for d > 2.
Measures of relative (in)compatibility.—A preorder

gives rise to a distinguished class of scalar functions,
i.e., monotones. We adopt the following definition.
Definition 2.—A function fB0

∶MðHÞ → Rþ
0 is a

measure of compatibility (incompatibility) relative to B0

if it is convex (concave) with respect to the preorder
≻B0 ; i.e., B1≻B0 B2⇒fB0

ðB1Þ≥fB0
ðB2Þ ½B1 ≻B0 B2 ⇒

fB0
ðB1Þ ≤ fB0

ðB2Þ�. Moreover, if fB0
ðB1Þ ¼ fB1

ðB0Þ,
we call it a symmetric measure of relative compatibility
(incompatibility).
The following proposition gives a construction for

measures of relative compatibility arising from convex
functions. It is a direct consequence of a result from [42],
derived in the context of matrix majorization.
Proposition 2.—Let ϕ∶Rd → R be a continuous convex

function. Then,

fϕB0
ðB1Þ ≔

X
i

ϕ(XR
i ðB1;B0Þ) ð5Þ

is a measure of relative compatibility; here, XR
i stands for

the row vectors of the matrix Xij.
Analogous claims hold for the incompatibility case in

terms of concave functions.
In fact, the family ffϕB0

ðB1Þgϕ for all continuous convex
ϕ is known to be a complete family of monotones
for matrix majorization [42]; i.e., joint monotonicity
fϕB0

ðB1Þ ≥ fϕB0
ðB2Þ for all such functions is enough to

imply B1 ≻B0 B2. In that sense, the existence of a prob-
abilistic uniforming process M such that Eq. (2) holds is
fully captured by this family of functions.
Incompatibility and coherence.—Quantum coherence

refers to the property of quantum systems to exist in a
linear superposition of different physical states. It is a
notion defined with respect to some preferred, physically
relevant basis, which we will denote as B0. A state ρ is said
to be coherent if there exist nonvanishing off-diagonal
elements when ρ is expressed as a matrix in B0. Recently,
coherence was formulated as a resource theory [43]. One of

the central measures in the theory is relative entropy of
coherence, cðrelÞB0

ðρÞ ≔ SðρkDB0
ρÞ that admits several

operational interpretations in terms of conversion rates
[44,45]. Later, we will also invoke the 2-coherence cð2ÞB0

≔P
i≠jjρijj2 [46].
Although quantum coherence refers to states and relative

incompatibility to measurements, the two notions are
closely connected. In fact, the ordering ≻B0 has rather
strong implications in terms of quantum coherence, both
for state conversion under incoherent operations [47] (i.e.,
easy operation in the resource theory of coherence [33])
and coherence monotones. We define the action of a unitary
superoperator over a basis as UðBÞ ≔ fUðPiÞgi.
Proposition 3.—Let B1 ≻B0 B2. (i) Consider a pair of

unitary quantum maps U, V such that UðB1Þ ¼ B0 and
VðB2Þ ¼ B0 and a pure state Pj ∈ B0. Then, VðPjÞ can be
transformed to UðPjÞ via incoherent operations over B0.
Consequently, all coherence measures over such states are
nonincreasing. (ii) cB1

ðρ0Þ ≤ cB2
ðρ0Þ for all ρ0 diagonal in

B0, where cB denotes either the relative entropy of
coherence or the 2-coherence over B.
In addition to the interpretation of Proposition 3 in the

framework of coherence, one can also infer from (ii) above
that a DB1

measurement disturbs less ρ0 compared to a DB2

measurement, if B1 ≻B0 B2, as it is precisely captured by
statistical meaning of the relative entropy [48].

In the light of the interpretation of cðrelÞB as distillable co-
herence [44], (ii) above demonstrates a quantitative trade-
off between compatibility and coherence. Moreover, any
coherence average CB0

ðBÞ ≔ R
dμðρ0ÞcBðρ0Þ is a measure

of incompatibility of B relative to B0. In fact, these averages
over the uniform distribution have been performed, veri-
fying explicitly that CB0

ðBÞ ¼ fϕB0
ðBÞ is of the form

indicated in (the concave analogue of) Proposition 2.
Indeed, ϕ coincides with the subentropy [49] for the case
of the relative entropy of coherence [50], while
ϕðp1;…; pdÞ ∝

P
ið½1=d� − p2

i Þ for the 2-coherence [51].
Finally, we note that in [52], the authors considered a

geometrically motivated measure of “mutual unbiasedness”
between pairs of orthonormal bases. Their measure is
proportional to the 2-coherence average above and hence
is also a symmetric measure of relative incompatibility.
Incompatibility and uncertainty.—We now consider the

implication of the preorder ≻B0 in terms of uncertainty and
fluctuations.
By its definition, the ordering B1 ≻B0 B2 assures that the

distribution pB2
ðρ0Þ is “more uniform” than pB1

ðρ0Þ,
for any state ρ0 diagonal in B0. An immediate conse-
quence is that all Schur-concave functions [53], which for
instance include α-Rényi entropies for (α ¼ 1 corresponds
to the usual Shannon entropy), satisfy Sα½pB1

ðρ0Þ� ≤
Sα½pB2

ðρ0Þ� [54].
Quantum fluctuations over different bases can be quanti-

fied via entropic uncertainty relations [10]. There, one tries
to impose bounds over entropic quantities, such as
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Sα½pB1
ðρ0Þ� þ Sβ½pB2

ðρ0Þ� ≥ rB0
ðB2;B1Þ (α ¼ β ¼ 1 corre-

sponds to the usual Shannon entropy), as a function
of the bases. The most well-known inequality is due to
Maassen and Uffink [6] and states that a (B0 independent)
choice for the above bound is rðMUÞðB2;B1Þ ≔
− log½maxi;jXijðB2;B1Þ� for any α; β ≥ 1=2 with 1=αþ
1=β ¼ 2. The bound has recently been improved by
Coles et al. [8] for the case of Shannon–von Neumann
entropy, as S½pB1

ðρ0Þ�þS½pB2
ðρ0Þ�≥Sðρ0ÞþrðMUÞðB2;B1Þ.

Let us also consider the quantity

QB0
ðB1Þ ≔ sup

A∈AB1
;kAk2¼1

max
i¼1;…;d

VariðAÞ;

where VariðAÞ ≔ TrðPð0Þ
i A2Þ − ½TrðPð0Þ

i AÞ�2; ð6Þ

that captures the strength of the fluctuations of a pure state
diagonal in B0 over a B1 measurement. In [41] we derive
the upper bound

QB0
ðB1Þ ≤ 1 − λmin½XðB1;B0ÞXTðB1;B0Þ� ≔ qðB1;B0Þ

ð7Þ
[λminðXÞ stands for the minimum eigenvalue of X]. The
bound is symmetric and satisfies qðB1;B0Þ ¼ 0 if and only
if B1 ¼ B0; hence it vanishes if and only if QB0

ðB1Þ
vanishes.
In words, rðMUÞ and q provide bounds on uncertainty and

fluctuations that arise due to the incompatibility between
the bases of measurement (for rðMUÞ) or state preparation
and measurement (for q), and can be thought of as playing a
role analogous to the commutator term in the usual
uncertainty relations for observables. As such, they both
turn out to be (symmetric) measures of relative incompat-
ibility, monotonic relative to the ordering ≻B0 .
Proposition 4.—Let B1 ≻B0 B2. Then, qðB1;B0Þ ≤

qðB2;B0Þ and rðMUÞðB1;B0Þ ≤ rðMUÞðB2;B0Þ.
Generalized measurements.—The ordering ≻B0 can be

directly extended to include generalized measurements
described by POVMs. Consider a state ρ0 ¼

P
ipiP

ð0Þ
i ∈

AB0
and a measurement F ¼ fFigi. The probability dis-

tribution of possible outcomes is pF ðρ0Þ ¼ XðF ;B0Þp,
where now ½XðF ;B0Þ�ij ≔ TrðFiP

ð0Þ
j Þ is just column sto-

chastic [56]. The analogous ordering over POVMs F and G
relative to a basis B0 can be defined as F ≻B0 G if and
only if there exists a bistochastic M such that
XðG;B0Þ ¼ MXðF ;B0Þ. In fact, the family ffϕB0

ðFÞ ≔P
d
i¼1 ϕ½XR

i ðF ;B0Þ�gϕ for all continuous convex ϕ still
forms a complete family of monotones for the ordering
≻B0 , now considered over POVMs.
However, in contrast with the orthogonal measurement

case, now it does not hold that pB0
ðρ0Þ ≻ pF ðρ0Þ for all F ,

namely, generalized measurements can “purify” the
initial probability distribution [57]. For this reason, we
consider as the appropriate meaningful generalization of
“incompatibility relative to a basis” to POVMs the less

restraining ordering that occurs by relaxing the constraint
of bistochasticity on the matrix M, and instead requiring
only column stochasticity. In this case, if F lies “higher” in
the ordering than G, then pGðρ0Þ can be obtained by
probabilistic postprocessing (not necessarily a uniforming
one) from pF ðρ0Þ, independently of ρ0 ∈ AB0

.
Definition 3.—We denote F ⪼B0 G if and only if there

exists a stochastic matrix M such that XðG;B0Þ ¼
MXðF ;B0Þ.
The ordering is a preorder and clearly F ≻B0 G ⇒

F ⪼B0 G. As such, the corresponding monotones for
⪼B0 are related to Eq. (5). The following is a direct
implication of a result by Alberti et al. [58] (see also [59]).
Proposition 5.—Let ψ∶Rd → R be a function that is

simultaneously convex and homogeneous in all its argu-
ments. Then,

gψB0
ðFÞ ≔

X
i

ψ ½XR
i ðF ;B0Þ� ð8Þ

is a monotone over ⪼B0, i.e., F ⪼B0 G ⇒ gψB0
ðFÞ ≥

gψB0
ðGÞ; here, XR

i stands for the row vectors of the matrix
Xij. Moreover, the family fgψB0

ðFÞgψ forms a complete set
of monotones for ⪼B0.
An analogue of Proposition 1 for the ordering ⪼B0 is

reported in [41].
Basis-independent incompatibility.—Finally, we connect

the orderings describing measurement incompatibility rel-
ative to a basis with the notion of a parent measurement
[26,60]. In this context, F is called a parent of G if there
exists a stochastic M such that Gi ¼

P
jMijFj ∀ i, while a

family of measurements are jointly measurable if they
admit a common parent.
Proposition 6.—F is a parent ofG if and only if F ⪼B0 G

for all B0 ∈ MðHÞ and the postprocessing matrixM can be
chosen to be the same for all B0.
Conclusions.—Quantum resource theories seem to sug-

gest that an appropriate quantification of quantum proper-
ties, even conceptually simple ones such as the
“uniformity” of a state [61], cannot be achieved by means
of a single scalar quantifier. Instead, only an infinite set of
functions is able to capture such properties in their whole-
ness, as they naturally result out of preorders. In this work,
we defined operationally motivated preorders over quan-
tum measurements that capture a notion of incompatibility
relative to a basis. Our approach uncovers a quantitative, as
well as conceptual, connection between incompatibility,
uncertainty, and quantum coherence unified under the
prism of multivariate majorization.
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