
 

Comment on “Is a Trineutron Resonance Lower in
Energy than a Tetraneutron Resonance?”

The quantum Monte Carlo study [1] of few-neutron
resonant states provided results incompatible with rigorous
few-body calculations [2–4]. In this Comment, we point
out serious shortcomings in the framework of Ref. [1],
leading to misinterpretation of unbound few-body systems.
The study of unbound few-neutron systems [1] followed

a quite popular strategy consisting of two steps: (i) make
the system bound with additional attractive potential,
controlled by strength parameter V0; (ii) extrapolate the
resulting binding energy to the physical limit in continuum
at V0 ¼ 0. Two different ways for step (i) have been
employed in Ref. [1]: (1) adding an external trap potential
and fixing center-of-mass (c.m.) of the system; (2) enhanc-
ing the nn interaction by factor α ¼ 1þ V0. Such a
procedure is sound if (a) the calculated bound state is
physical and it evolves into resonance, and (b) the analytic
continuation to a different Riemann sheet with resonance is
performed correctly, taking into account threshold effects.
We argue that both these conditions are not satisfied in

Ref. [1]. For definiteness, we consider the four-neutron
(4n) system. Additional attraction may generate a bound
dineutron with energy Ed < 0, which, then, defines the
stability threshold for tetraneutrons: only those with
E4n ≤ Ed in the trap (or those with E4n ≤ 2Ed for the
enhanced force) are stable. Otherwise, even in the case
E4n < 0, they can decay into dineutron plus two infini-
tesimally slow neutrons moving around the common mass
center (trap) or into two dineutrons (produced by
enhanced force).
Our study reveals that a bound 1S0 dineutron emerges in

Woods-Saxon (WS) trap with radius RWS ¼ 6 fm and
potential depth V0 ≈ −0.09 MeV only, or when the
enhancement factor α in the 1S0 wave exceeds ≈1.1 (these
values slightly depend on the underlying nn potential).
Further examples for RWS ¼ 4.5 and 7.5 fm are presented in
Fig. 1(a). However, 4n states declared to be bound tetraneu-
trons with E4n → 0 in Ref. [1] were found only at signifi-
cantly larger absolute values of V0 ≈ −1.2 MeV and

α ≈ 1.3. For such Hamiltonians, the dineutrons are already
well bound, thus, the lowest-energy state of the system is not
a true bound state [5], but a continuum state that asymp-
totically looks like a dineutron in a trap plus two slow
peripheral neutrons (two uncorrelated dineutrons cannot be
placed in the same trap). It appears that Ref. [1] ignored this
effect in the presumed E4n ≈ 0 region, which is decisive for
the extrapolation. The tetraneutron states of Ref. [1] are
above the stability threshold and, therefore, are not true
bound states but most probably represent some discretized
continuum states that do not evolve into a resonance.
Extrapolation of their energies does not lead to proper
resonance energy.
Furthermore, a caution is needed in the extrapolation

procedure itself if real bound states are calculated, since
trajectory of a bound state evolving into continuum state
involves branching at each threshold with discontinuity in
the second derivative of energy with respect to a strength
parameter [6]. Polynomial extrapolations [1] neglect this
discontinuity and, therefore, are conceptually incorrect.
We show two examples in Fig. 1 corresponding to the 1S0

virtual state for a realistic potential and to the resonance of the
two-Gaussian potential [1]. Obtained 1S0 pole trajectories
have a typical bending shape, resulting in−0.12 MeVvirtual
state energy, in sharp contrastwith the positive 0.1MeVvalue
of Ref. [1]. The latter is obtained by a polynomial extrapo-
lation neglecting the near-threshold bending region. The
resonance of the two-Gaussian potential does not necessarily
evolve from the ground state in the trap. In a favorable case, a
linear extrapolation, avoiding the input from the near-thresh-
old region, may give a reasonable estimation for the energy of
a narrow resonance. However, the presence of a branching
point at the threshold, as shown in Fig. 1 (inset), produces
highly nonlinear effects rendering naive extrapolation proce-
dures mathematically unjustified.
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FIG. 1. 1S0 dineutron pole trajectories in Wood-Saxon traps
with given range parameters for realistic (a) and two-Gaussian
(b) potentials.
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