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There is great interest in predicting rare and extreme events in complex systems, and in particular,
understanding the role of network topology in facilitating such events. In this Letter, we show that degree
dispersion—the fact that the number of local connections in networks varies broadly—increases the
probability of large, rare fluctuations in population networks generically. We perform explicit calculations
for two canonical and distinct classes of rare events: network extinction and switching. When the distance
to threshold is held constant, and hence stochastic effects are fairly compared among networks, we show
that there is a universal, exponential increase in the rate of rare events proportional to the variance of a
network’s degree distribution over its mean squared.
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Systems containing a large, yet finite, population of
interacting individuals or dynamical units often experience
fluctuations due to the stochastic nature of agent inter-
actions and local dynamics. Most of the time such systems
reside in the vicinity of some attractor, undergoing small
random excursions around it. Yet, occasionally a rare large
fluctuation, on the order of the typical system size, may
occur, which can lead to a transition to an absorbing state (a
state that, once entered, cannot be left) or to the vicinity of
another attractor. As a result, stochasticity can turn deter-
ministically stable attractors into metastable states [1].
Examples of such extreme, rare events, which may be of
key practical importance include population extinction
[2–6], switching in gene regulatory networks [7–10], the
arrival of biomolecules at small cellular receptors [11], and
power-grid destabilization [12–14].
Usually, rare events in populations are considered within

well-mixed or homogeneous settings, e.g., where individ-
uals interact with an equal number of neighbors. In this
case, analytical treatment is possible using standard tech-
niques [6,9,15]. On the other hand, it is known that in
topologically heterogeneous networks, e.g., where nodes
have a variable degree, the critical behavior can be
dramatically affected [16–19]. Unfortunately, predicting
rare events in degree-heterogenous networks is notoriously
difficult, due to high dimensionality and complex coupling
between degrees of freedom. Though some progress has
been made by applying semiclassical approximations to
master equations governing stochastic dynamics in com-
plex systems [20–22], often the resulting Hamilton equa-
tions are difficult to solve, as they require computing
unstable trajectories in high-dimensional phase spaces
[23–26]. Consequently, analyzing rare events in general
networks has been mainly limited to near-bifurcation
regimes, where dimensionality is reduced.

In this Letter, we apply a novel perturbation scheme that
allows us to predict a universal increase in the rate of rare
events by exploiting the extent of network heterogeneity, or
degree dispersion. We find that this increase is proportional
to the ratio of the variance of a network’s degree distribu-
tion to its mean squared, or coefficient of variation (CV)
squared, and is otherwise independent of topology. Our
approach is shown analytically for two canonical examples
of fluctuation-driven rare events: extinction of epidemics in
the susceptible-infected-susceptible (SIS) model on net-
works, and switching (or spontaneous magnetization flip-
ping) in binary spin networks.
Extinction in heterogenous networks: The SIS model.—

We begin by considering the SIS model of epidemics,
which consists of two types of individuals: susceptibles (S)
and infecteds (I) [27]. A susceptible can get infected upon
encountering an infected individual, Sþ I → I þ I, while
an infected can recover and become susceptible again,
I → S. We first consider networks with only two degree
classes, and then generalize to arbitrary degree distribu-
tions. We assume a network of N ≫ 1 nodes, with N=2
nodes of degree k1 ≡ k0ð1 − ϵÞ and N=2 nodes of degree
k2 ≡ k0ð1þ ϵÞ. Each node represents a single individual
which can be in either state. We assume the infection rate is
λ and the recovery rate is 1.
Denoting by ni the number of degree-ki (i ¼ 1, 2)

infected nodes, and by xi ¼ ni=ðN=2Þ the densities of
degree-ki infected nodes, the probability for a given node to
be connected to an infected node in a random network
with this bimodal degree distribution is Φðn1; n2Þ≡
Φðx1; x2Þ ¼ ðk1x1 þ k2x2Þ=ðk1 þ k2Þ. Thus, the average
infection rate (per individual) of a susceptible node of
degree ki is λkið1 − xiÞΦðx1; x2Þ, while the recovery rate is
simply xi.
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In order to make analytical progress, we assume that the
average dynamics over an ensemble of uncorrelated ran-
dom networks can be approximated by the following four
(twice the number of degree classes) stochastic reactions,
occurring in a well-mixed setting [18–22]:

n1 ›
λk1ðN=2−n1ÞΦðx1;x2Þn1 þ 1; n1⟶

n1 n1 − 1;

n2 ›
λk2ðN=2−n2ÞΦðx1;x2Þn2 þ 1; n2⟶

n2 n2 − 1: ð1Þ

This formulation is equivalent to the so called annealed
network approximation (ANA) [28]. However, an analo-
gous argument can be developed for networks with
empirical adjacency matrices in the limit of large spectral
gaps [29]. In the latter case, the degree is replaced by the
eigenvector centrality in all results below.
We are interested in quantifying how broadening a

network’s degree distribution affects the rate of extinction
of infection by stochastic fluctuations. We focus on the case
where the standard deviation of the degree distribution, σ, is
sufficiently smaller than its mean hki, allowing for a
rigorous perturbative treatment. For bimodal networks
hki≡ k0, while σ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hk2i − hki2

p
¼ k0ϵ. Therefore, we

assume henceforth that σ ≪ hki, or ϵ ≪ 1.
The deterministic rate equations, describing the mean

density of infected nodes with degrees k1 and k2, read

_x1 ¼ λk0ð1 − ϵÞð1 − x1ÞΦðx1; x2Þ − x1;

_x2 ¼ λk0ð1þ ϵÞð1 − x2ÞΦðx1; x2Þ − x2: ð2Þ
The critical value of λ, below which there is no long-
lived endemic state, satisfies on random networks λc ≡
hki=hk2i ¼ 1=½k0ð1þ ϵ2Þ� ≃ ð1 − ϵ2Þ=k0 (given the ANA)
[28]. Thus, we write λ ¼ Λλc, where Λ ≥ 1, and Λ − 1
measures the distance to bifurcation or threshold.
Rate equations (2) admit two positive fixed points.

For ϵ ≪ 1, these become ½x1; x2� ¼ ½x0ð1 − ϵ=ΛÞ;
x0ð1þ ϵ=ΛÞ�, which is stable, and ½x1; x2� ¼ ½0; 0�, which
is unstable, where x0 ¼ ðΛ − 1Þ=Λ. A transcritical bifur-
cation occurs as Λ passes the value of 1. While it gives
some intuition, the deterministic picture ignores demo-
graphic noise emanating from the discreteness of indivi-
duals and stochasticity of the reactions. This noise, and the
fact that the extinct state n1 ¼ n2 ¼ 0 is absorbing, make
the nontrivial stable fixed point in the language of the rate
equations, metastable. Thus, the network ultimately goes
extinct via a rare, large fluctuation [4,6,30–32].
Accounting for demographic noise, the master equation

for Pn1;n2ðtÞ: the probability to find at time t, n1 and n2
infected nodes on degrees k1 and k2, respectively, satisfies

_Pn1; n2ðtÞ ¼ ½λk0ð1 − ϵÞðE−1
n1 − 1ÞðN=2 − n1ÞΦðn1; n2Þ

þ λk0ð1þ ϵÞðE−1
n2 − 1ÞðN=2 − n2ÞΦðn1; n2Þ

þ ðE1
n1 − 1Þn1 þ ðE1

n2 − 1Þn2�Pn1; n2 ; ð3Þ

where λ ¼ Λð1 − ϵ2Þ=k0, and Ej
nfðnÞ ¼ fðnþ jÞ is a step

operator. Next, we assume that the network settles into a
long-lived metastable state prior to extinction. This
assumption is justified if N is large, and the mean time
to extinction (MTE), T, is very long. This metastable state,
which is described by a quasistationary distribution (QSD)
about the stable fixed point, slowly decays in time at a rate
which equals 1=T, while simultaneously the extinction
probability grows and reaches the value of 1 at infinite time
[1,4]. We now plug the ansatz Pn1;n2 ≃ πn1;n2e

−t=T into
master equation (3), where πn1;n2 is the QSD, and employ
the Wentzel-Kramers-Brillouin (WKB) approximation for
the QSD, πn1;n2 ≡ πðx1; x2Þ ∼ e−NSðx1;x2Þ, where Sðx1; x2Þ
is the action function [1]. In the leading order in
N ≫ 1 we arrive at a stationary Hamilton-Jacobi equation
Hðx1; x2; ∂x1S; ∂x2SÞ ¼ 0, with Hamiltonian

Hðx1; p1; x2; p2Þ ¼
λk0
2

Φðx1; x2Þ½ð1 − ϵÞð1 − x1Þðep1 − 1Þ
þ ð1þ ϵÞð1 − x2Þðep2 − 1Þ�
þ x1

2
ðe−p1 − 1Þ þ x2

2
ðe−p2 − 1Þ; ð4Þ

where pi=2 ¼ ∂xiS are normalized momenta. The
Hamilton equations satisfy _xi=2 ¼ ∂pi

H and _pi=2 ¼
−∂xiH. Once SðxÞ is known by solving Hamilton’s
equations, so is the MTE, which is proportional to
eNSð0;0Þ [4,21,30].
For convenience, let us define new variables

u ¼ ðx1 − x2Þ=2, pu ¼ p1 − p2, w ¼ ðx1 þ x2Þ=2, and
pw ¼ p1 þ p2. This transformation is canonical since the
determinant of the Jacobian ∂ðQ;PÞ=∂ðx;pÞ ¼ 1, where
Q ¼ ðu; wÞ, P ¼ ðpu; pwÞ, x ¼ ðx1; x2Þ, and p ¼ ðp1; p2Þ.
Using the new variables, the path to extinction connects
between the fixed points ½w�; u�; 0; 0� and ½0; 0; p�

w; p�
u�,

where

w� ¼ x0½1 − ð2=ΛÞϵ2�; u� ¼ −ðx0=ΛÞϵ;
p�
w ¼ −2 lnΛþ ½x0ð3Λþ 1Þ=Λ�ϵ2; p�

u ¼ 2x0ϵ: ð5Þ

Since the above transformation is canonical, the action
along the path to extinction is given by [1]

Sð0Þ ¼ 1

2

Z
p1dx1 þ

1

2

Z
p2dx2 ¼

1

2

Z
pwdwþ 1

2

Z
pudu:

ð6Þ

Transforming to the new variables in Hamiltonian (4), and
assuming u and pu scale as OðϵÞ, we find the trajectories
pwðwÞ and puðuÞ up toOðϵ2Þ [33]. The trajectories are then
substituted into Eq. (6), which yields
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Sð0Þ¼ S0−fEðΛÞϵ2;
fEðΛÞ¼ ½ðΛ−1Þð1−12Λþ3Λ2Þþ8Λ2 lnΛ�=ð4Λ3Þ; ð7Þ

where S0 ¼ 1=Λþ lnΛ − 1 is the action for a degree-
homogeneous network (ϵ ¼ 0), and fEðΛÞ > 0. As a
consequence, we have obtained an exponential increase
in the rate of extinction due to network heterogeneity,
which only depends on the CV of the network’s degree
distribution. In Fig. 1 we demonstrate that in the limit of
ϵ ≪ 1 our analytical results (7) agree well with numerical
solutions of the Hamilton equations, obtained using the
iterative action minimization method [26,33].
Given our analysis for bimodal networks, it is straight-

forward to generalize to arbitrary, symmetric degree distri-
butions, first, and then to skewed distributions. Let us
denote by gðkÞ the node degree distribution. That is, if Nk
are the number of nodes of degree k such that

P
kNk ¼ N,

we have gðkÞ ¼ Nk=N. We assume that gðkÞ is a symmetric
distribution about the mean k0 ≡ hki, such that gðk0 þ iÞ ¼
gðk0 − iÞ for i ¼ 1; 2; 3;…. Let us also assume our distri-
bution has a bounded support such that kmin ¼ k0 − Δ and
kmax ¼ k0 þ Δ, where gðk < kminÞ ¼ gðk > kmaxÞ ¼ 0. We
again denote by nk the number of infected individuals on
degree-k nodes, and by xk ¼ ½1=gðkÞ�nk=N ¼ nk=Nk the
fraction of such infected individuals. Writing down the
master equation for Pfnkg—the joint probability to find
ðnkmin

;…; nkmax
Þ infected nodes of degree k, and using

the above WKB formalism, PðxÞ ∼ e−NSðxÞ, where
x ¼ ðxkmin

;…; xkmax
Þ, we arrive at a Hamiltonian equivalent

to [21]. Denoting gðkÞpk ¼ ∂S=∂xx, the action can be
shown to satisfy [33]

Sð0Þ ¼
Xk0þΔ

k¼k0−Δ
gðkÞ

Z
pkdxk ¼ gðk0Þ

Z
pk0dxk0

þ
XΔ
j¼1

gðk0− jÞ
Z

pk0−jdxk0−jþpk0þjdxk0þj; ð8Þ

where we have used the symmetry of gðkÞ about its mean
k0. Now, since each pair of nodes k0 � j for j ∈ ½1;Δ� can

be viewed as a bimodal network, using Eqs. (6) and (7), the
action for such a bimodal network with degrees k0 − j
and k0 þ j, satisfies ð1=2Þ R pk0−jdxk0−j þ pk0þjdxk0þj ¼
S0 − fEðΛÞϵ2j , where ϵj ¼ j=k0. Moreover, the node of
rank k0 can be viewed as a bimodal network with ϵj ¼ 0,
such that

R
pk0dxk0 ¼ S0. Therefore, using the fact thatP

kgðkÞ ¼ 1 and that the variance of gðkÞ satisfies
σ2 ¼ P

kðk − k0Þ2gðkÞ, the action [Eq. (8)] and MTE
become

T ∼ eNSð0Þ; Sð0Þ ¼ S0 − fEðΛÞσ2=hki2: ð9Þ

Equation (9) is the first of the main results in this Letter.
Namely, for any network, if the CV is small, σ=hki ≪ 1, the
logarithm of the MTE decreases linearly with the square of
the CV, compared to the degree-homogenous limit. This
indicates that for large networks, for which σ=hki ≫ N−1=2,
the extinction rate is exponentially increased when the
population resides on a degree-heterogeneous network,
compared with the homogenous case—examples include
human contact networks, see, e.g., Refs. [34,35].
Furthermore, while the prefactor for the relative increase
of the logarithm of the MTE, fEðΛÞ, is problem specific, it
is independent of the network topology, and is computed
for any distance to threshold. Figure 2 shows a comparison
between Eq. (9) and Monte Carlo simulations for the MTE
in several networks, demonstrating the agreement both in
terms of σ2=hki2 and Λ.
Our analysis above required that the network degree

distribution be symmetric and bounded. However, even for
nonbounded asymmetric distributions the MTE is still
given by Eq. (9), as long as such distributions are
symmetric in the vicinity of their mean and their skewness
is small. In fact, one can show that if these conditions are
met, the errors contributed from neglected terms, outside of
the symmetrical bulk, are negligible [33]. This is demon-
strated in Fig. 2 where we show that theoretical expression
(9) agrees well with numerics, also in the case of asym-
metric gamma distributions. Moreover, in the Supplemental
Material we show that our results even hold for power-law
networks when the CV is not too large [33].
Switching in heterogenous networks: The Spin model.—

Next, we consider a canonical binary spin system, where
nodes are either (þ) or (−), instead of infected or
susceptible, and make stochastic transitions according to
a continuous-time Glauber dynamics [35,36]. Namely, if
there is no spontaneous transition (analogous to sponta-
neous recovery in the SIS model), then each node i flips
spin at a rate proportional to 1=½1þ exp fλΔEig�, where
ΔEi is the change in the local pairwise ferromagnetic
energy for node i to flip spin, and λ is an inverse temper-
ature [33]. Here, the densities xk are the magnetization of
nodes with degree k: the fraction of degree-k nodes with
spin (þ) minus those with spin (−). The master equation
and Hamiltonian for x can be derived in precisely the

FIG. 1. Left panel: Sð0Þ − S0 versus ϵ2 ¼ σ2=hki2 for bimodal
networks. Symbols are numerical solutions of the Hamilton
equations for Λ ¼ 1.5, 2, 2.5, 3, 3.5 (top to bottom); lines are
the analytical results (7). Right panel: −½Sð0Þ − S0�=ϵ2 versus Λ.
Symbols are numerical solutions for ϵ ¼ 0.02 − 0.16 (see left
panel). The curve is the second of Eqs. (7).
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same way as the SIS model [37]. The Hamiltonian
reads

Hðx;pÞ ¼ 1

2

X
k

gðkÞ½ð1 − xkÞðe2pk − 1Þð1þ e−2λkx̄Þ−1

þ ð1þ xkÞðe−2pk − 1Þð1þ e2λkx̄Þ−1�; ð10Þ
where x̄ ¼ P

kkgðkÞxk=hki is the degree-weighted mean
magnetization, and gðkÞpk ¼ ∂S=∂xk are the momenta.
In contrast to the SIS model, the spin model exhibits

three fixed points: x ¼ x� and x ¼ −x� which are
stable, and x ¼ 0 which is unstable. The stable fixed
points emerge at a pitchfork bifurcation when λ ¼ λc≡
hki=hk2i. As before, we may denote λ ¼ Λλc, where Λ ¼ 1
is the bifurcation threshold. In the spin model, demographic
noise causes switching between x� and −x� [38]. In order
to find the action for switching, we exploit the fact that
there is detailed balance in the absence of spontaneous
flipping (though this assumption can be relaxed without
qualitatively changing our main result [39]). As a conse-
quence, the deterministic trajectory starting from the
vicinity of the unstable point 0 and ending at the stable
fixed point x� coincides up to time reversal, with the
fluctuational path from x� to 0 [1]. Once at the unstable
point 0, the network can switch to −x� following its
deterministic dynamics.
In order to find the switching path, we again use

Hamilton’s equations gðkÞ_xk ¼ ∂H=∂pk. The relevant tra-
jectories pkðxÞ can be found by equating −_xkjp¼0 ¼ _xkðpÞ,
where the former represents (minus) the deterministic
trajectory. By doing so, the switching path satisfies [33]

pkðxÞ ¼ ð1=2Þ ln ½ð1þ xkÞ=ð1 − xkÞ� − λkx̄;

and hence the action for switching, Sð0Þ ¼P
kgðkÞ

R
0
x�k
pkdxk, becomes

Sð0Þ ¼ λhkix̄�2
2

−
1

2

X
k

gðkÞ
�
lnf1 − x�2k g þ x�k ln

�
1þ x�k
1 − x�k

��
:

ð11Þ
Following the same general approach as for the SIS

model, we write k ¼ k0ð1þ ϵÞ where ϵ≡ ðk − k0Þ=k0. For
degree distributions with a small CV, σ=k0 ≪ 1, we have
λ ≈ Λ½1 − hϵ2i�=k0 and hϵ2i ¼ σ2=k20, as before. In order to
evaluate Eq. (11) in the limit of hjϵji ≪ 1, we use the
small-hjϵji expansion of x�k and x̄�, see [33], and keep terms
up to order hϵ2i. This procedure yields the action and mean
switching time (MST)

T ∼ eNSð0Þ; Sð0Þ ¼ S0 − fSðΛÞσ2=hki2;
fSðΛÞ ¼ ðΛx20=2Þ½1 − Λð1 − x20Þ�; ð12Þ

where S0 ¼ −ð1=2Þ½ln ð1 − x20Þ þ Λx20� > 0, x0 is the posi-
tive solution of x0 ¼ tanhfΛx0g, and fSðΛÞ > 0.
As was the case for extinction, the action for switching is

reduced from the homogeneous network limit by a uni-
versal correction, which is a product of the network’s CV
squared with a model-dependent (though topologically
independent) prefactor. As a consequence, the broader
the network degree distribution, the more likely switching
is to occur between stable magnetization states, given a
constant distance to threshold. Figure 3 shows a compari-
son between Eq. (12) and Monte Carlo simulations for the
MST in several networks, analogous to Fig. 2. As with
extinction, the results hold for skewed distributions.
To check the universality of our results, in Fig. 4 we plot

the correction ½Sð0Þ − S0�=fðΛÞ versus the CV, and obtain a
collapse across all networks and all Λ, for both models:
network simulations and numerical solutions of the
Hamilton equations [33]. As our analysis exemplifies, if
the rate of rare events (on log scale) is normalized by the

ln
<

T
>

σ 2 2/<k>

ln
<

T
>

Λ

13.5

13.0

12.5

12.0

0.002 0.006 0.010 0.014

15

13

11

  9

1.12 1.16 1.20 1.24

FIG. 3. MST versus (left) the degree dispersion and (right) the
threshold parameter. The same networks were used as in Fig. 2;
(left): green, Λ ¼ 1.12; red, Λ ¼ 1.16; magenta, Λ ¼ 1.18

ln
<

T
>

σ 2 2/<k>

ln
<

T
>

Λ

13.8

13.4

13.0

12.6

0.002 0.006 0.010 0.014

15

13

11

1.225 1.275 1.325 1.375

FIG. 2. Left panel: MTE versus the degree dispersion for
several networks; for each point, a mean time is computed from
200 stochastic realizations in a fixed network with a given degree
distribution. This is repeated for 20 different network realizations
with the same degree distribution and the same number of edges.
The log of all such averages is then averaged. Error bars are given
by the standard deviation of the latter. Results are shown for
uniform (green, Λ ¼ 1.16, N ¼ 1500, hki ¼ 50), Gaussian (red,
Λ ¼ 1.24, N ¼ 600, hki ¼ 108.5), and Gamma (magenta,
Λ ¼ 1.26, N ¼ 500, hki ¼ 110.4) distributions. Note that each
distribution has one tunable parameter for the variance given a
fixed hki. Right panel: MTE versus the threshold parameter Λ.
Results are shown for Erdős-Rényi networks (green, N ¼ 600,
hki ¼ 160, σ=hki ¼ 0.067) and (magenta, N ¼ 300, hki ¼ 120,
σ=hki ¼ 0.072), and Gaussian distributions (red, N ¼ 400,
hki ¼ 110.4, σ=hki ¼ 0.064). The MTEs and error bars were
computed through the same procedure as in the left panel.
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correct process-dependent factor fðΛÞ, all networks with
the same CV collapse onto the same parabola, given a fixed
distance to threshold. Moreover, similar plots and results
are shown in the Supplemental Material for power-law
networks and continuous-noise analogs for both proc-
esses [33].
To conclude, we employed a novel perturbation theory

that utilizes the extent of heterogeneity in a network, on two
prototypical examples of rare events in networks: extinction
in the SIS model of epidemics, and spontaneous magneti-
zation switching in a dynamical spin network. We com-
puted the rate of increase of rare events, and showed that it
depends solely on the coefficient of variation (CV) of the
network’s degree distribution, but is independent of the
exact type of network and connectivity matrix. A key
insight therein, was to compare different networks with the
same distance to threshold, such that deterministic or
fluctuation-free stability was held constant, while propen-
sities for noise-induced fluctuations could be isolated. We
found that the rate of extinction or switching can be
dramatically increased, as long as the CVof the network’s
degree distribution exceeds N−1=2, which is a reasonable
assumption for realistic networks. Finally, we have shown
that our approach is valid in processes with maintained as
well as broken detailed balance, holds across a broad range
of network topologies, and generalizes to different noise
sources [33]. Thus, we conjecture that our results are
applicable to rare events in a wider range of network
processes driven by noise, which include local interactions,
and where fluctuations drive a network from a metastable
state to an unstable state who merge in a single fixed-point
bifurcation [33].
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