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We consider a population of individuals living in an uncertain environment. Individuals are able to make
noisy observations of the environment and communicate using signals. We show that the model shows an
order-disorder transition from an ordered phase in low communication noise in which a consensus about
the environmental state is formed to a disordered phase in high communication noise in which no
consensus is formed. There are different consensus states: informed consensus in which consensus on the
correct belief about the environmental state is formed, and misinformed consensus in which consensus on a
wrong belief is formed. Based on the consensus state reached, the ordered phase is decomposed into
multistable states separated by first order transitions. We show that the inference capability of the
population in a changing environment is maximized on the edge of bistability: on the border between an
informed consensus phase and a bistable phase in which both informed and misinformed consensuses are
stable. In addition, we show that an optimal level of noise in communication increases the responsiveness
of the population to environmental changes in a resonancelike phenomenon. Furthermore, the beneficial
effect of noise is the most crucial in a fast changing environment.
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Introduction.—Survival in an uncertain environment
necessitates biological populations infer information about
environmental conditions and environmental changes
[1–5]. Collective sensing mediated by communication
between individuals is one of the most important mecha-
nisms evolved to accomplish this task [5–8]. Examples are
found all over the biological world from quorum sensing in
bacteria [9,10] to communication between cells in multi-
cellular organisms [11], communication between insects
(for instance, in eusocial insects [12,13]), communication
between large animals living in groups [14], and finally
human language [15,16]. Given the prevalence of such
collective sensing populations, an important challenge is to
understand the mechanism and the optimal conditions by
which collective sensing enables a population to collec-
tively extract information about the environment. To tackle
this challenge, we consider a model of collective sensing in
which individuals in a population, who live in an uncertain
environment, are able to make noisy observation of the
environment and communicate by production and compre-
hension of signals [7]. By developing a mean field theory
and using agent based simulations, we extend a previous
study [7] by deriving the full phase diagram of the system.
The model shows an order-disorder transition from an
ordered phase in low communication noise to a disordered
phase in high communication noise. In the ordered phase,
consensus happens either on the correct belief about the
environmental state, which we call informed consensus, or
on a wrong belief, which we call misinformed consensus.
Based on the type of the consensus, the ordered phase is
decomposed into different multistable phases separated by

discontinuous transitions. Given that different consensus
states are possible, an important question is the following:
Under what conditions does the population make optimal
use of information and form a desirable consensus state?
We show that the inference capability of a collective
sensing population in a changing environment is maxi-
mized on the edge of bistability: That is on the border
between a monostable informed consensus phase and a
bistable phase in which both informed and misinformed
consensuses are stable.
In addition, we show that, although some amount of

noise in communication is beneficial by increasing the
speed by which the population responds to environmental
changes, too much noise is detrimental by decreasing the
decision making accuracy. The optimal speed-accuracy
trade-off is reached on the edge of bistability in a
resonancelike phenomenon. Furthermore, we show that
the constructive role of noise is the most crucial in fast
changing environments.
The model.—We consider a population of individuals

living in an environment that can take one out of n possible
states. Individuals have access to n representations. Each
representation corresponds to one of the environmental
states. In addition, in order to communicate their repre-
sentations, they can produce and comprehend n signals:
each corresponding to one of the representations. In the
following, after explaining how observation, signal pro-
duction and comprehension, and belief formation are
performed, the dynamics of the model is described.
In order to make observations, each individual is equi-

pped with an observation channel γr;ϵR . This is a probability

PHYSICAL REVIEW LETTERS 123, 068101 (2019)

0031-9007=19=123(6)=068101(6) 068101-1 © 2019 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.123.068101&domain=pdf&date_stamp=2019-08-06
https://doi.org/10.1103/PhysRevLett.123.068101
https://doi.org/10.1103/PhysRevLett.123.068101
https://doi.org/10.1103/PhysRevLett.123.068101
https://doi.org/10.1103/PhysRevLett.123.068101


transition matrix such that the result of an observation
in environment ϵ is representation r with probability γr;ϵR .
Individuals communicate by production and comprehen-
sion of signals. For this purpose, each individual is equi-
pped with a production channel γσ;rG such that it produces
signal σ for representation r with probability γσ;rG . Similarly,
individuals have a comprehension channel γr;σC such that
representation r is comprehended for signal σ with prob-
ability γr;σC . To implement the fact that the observation,
production, and comprehension of signals are subject to
noise, we parametrize these matrices by a single noise
parameter ηx, such that γa;bx ¼ 1 − ηx if a ¼ b, and γa;bx ¼
ηx=ðn − 1Þ otherwise. Here, x can be R, G, or C, referring
to the different channels.
As a result of observation and communication, an

individual i reaches an internal state ri ¼ fri; r0ig. Here,
ri is the result of observation of individual i in case it
has made an observation, and r0i is the set of representations
the individual has formed by comprehending the signals
it has received from others. Each individual i needs to form
a belief Zi about the environmental state based on its
information ri. Zi can be either of the n representations.
For example, Zi ¼ b means individual i believes the
environment is in state b. To form beliefs, individuals
use a decision rule. We consider a noisy weighted majority
rule. In this decision rule, individuals count their repre-
sentations, weighting their personal observation by a
weight factor ω0

R, and form belief a with a probability
proportional to the exponential of a decision accuracy
parameter β0 times the weight of representation a. That is,

P(Ziðtþ 1Þ ¼ a) ¼ expfβ0½ω0
RX

a
i ðtÞ þ Ya

i ðtÞ�gP
a expfβ0½ω0

RX
a
i ðtÞ þ Ya

i ðtÞ�g
: ð1Þ

Here, t refers to time, Ya
i is the number of representations a

that individual i has received due to communication, and
Xa
i is a random variable that is equal to one if individual i

obtains representation a as a result of an observation; and it
is zero otherwise.
The dynamics of the model is as follows: We assume

individuals reside on a communication network (which we
take to be a fully connected network) such that, when an
individual intends to signal others, transmits its signal to all
its neighbors. At each time step, each individual makes an
observation with probability h using its observation chan-
nel. In addition, each individual receives a set of signals
from its neighbors and comprehends these signals using its
comprehension channel γr;σC . As a result of observation and
communication, each individual i reaches an internal state
ri ¼ fri; r0ig and forms a belief Zi using its decision rule.
Forming belief Zi, the individual produces a signal σ using
its production channel γσ;Zi

G and transmits the signal to all its
neighbors.
We begin by deriving the phase diagram of the model.

Then, we study the dynamics of the model in a changing

environment by assuming that each environmental state
lasts for τ time steps; after which, the environment changes
to a new state chosen uniformly at random.
Mean field equations.—To derive a set of mean field

equations, we define ρaG, ρaC, and ρaB as, respectively,
the densities of signal a, representation a resulting from
comprehending signals, and belief a in the population.
An individual has belief b with probability ρbB; in which
case, it produces signal a with probability γa;bG . Summing
over b, we have for the mean field evolution equation for
the density of signals

ρaGðtþ 1Þ ¼
X

b

γa;bG ρbBðtÞ: ð2Þ

Similarly, we can write for the density of representations
resulting from comprehending signals

ρaCðtþ 1Þ ¼
X

b

γa;bC ρbGðtÞ: ð3Þ

In general, we have for the time evolution of the density of
beliefs

ρaBðtþ 1Þ ¼ hP½Za
i ðtþ 1Þ�ii: ð4Þ

where h:ii denotes an overage over the population. We
make the mean field assumption by replacing the random
variables Xi and Yi in this expression with their mean. This
gives

ρaBðtþ 1Þ ¼ exp½βðωRhγ
a;ϵ
R þ ρaCðtÞ�P

a expfβ½ωRhγ
a;ϵ
R þ ρaCðtÞ�g

: ð5Þ

Here, we have defined β ¼ β0hki, ωR ¼ ω0
R=hki, and used

the following equation for the averages of Xa
i and Ya

i :

hXa
i ðtÞi ¼ hγa;ϵR ;

hYa
i ðtÞi ¼ hkiρaCðtÞ: ð6Þ

where hki is the mean connectivity of the communication
network. Equations (2), (3), and (5) constitute the set of
mean field equations for the model. In the following, we
derive the phase diagram of the system based on these
equations and using agent based simulations.
Phase diagram.—We begin by setting ηG ¼ 0 and

considering the comprehension noise. Production noise
leads to qualitatively similar phase diagrams. In Figs. 1(a)
and 1(b), we sketch the phase diagram of the model in,
respectively, ωR − ηC and ωR − β planes. Here, h ¼ 1 and
ηR ¼ 0. In Fig. 1(a), β ¼ 50; and in Fig. 1(b), ηC ¼ 0. Blue
dots (which appear as lines) denote mean field solutions,
and red markers indicate agent based simulation results.
Different phases are abbreviated by letters. Blue letters
denote phases resulted from mean field solutions, whereas
red letters indicate simulation results. For other parameter
values, themodel shows qualitatively similar phase diagrams
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(see the Supplemental Material [17]). Here, and in the
following, agent based simulations are performed on a fully
connected network of size N ¼ 100.
We begin by the phase diagram in the ωR − ηC plane, in

Fig. 1(a). For large noise levels, a disordered phase
(indicated by D in the figure) occurs, in which each
individual forms a random belief independently of others.
At each fixed β (large enough) and ωR (small enough), by
decreasing the noise level ηC, the model shows an order-
disorder transition. In the ordered phase, a consensus is
formed. However, the nature of the consensus depends on
ωR. For large ωR, the system has only one stable phase,
which we call the informed consensus (denoted by I). By
decreasing ωR, in a value of ωR that depends on ηC, the
system becomes bistable and a new consensus state, called
misinformed consensus, appears in which the consensus
on a wrong belief is formed. Consequently, we have a
coexistence of informed and misinformed consensuses
(denoted by IM). By further decreasing ωR, yet another
bifurcation happens: for smaller ωR, the system shows three
stable solutions: the informed consensus, misinformed
consensus, and disordered phase (denoted by IMD). By
further decreasing ωR in the negative range, another
bifurcation happens; below which, the informed consensus
becomes unstable. According to the simulations in this
region, for small noise levels, only the misinformed
consensus exists (denoted by M). On the other hand, for
larger noise levels, both the misinformed consensus and the
disordered phase are stable (denoted by MD). However,
mean field solutions do not predict the existence of a
monostable misinformed consensus phase. Finally, by
further decreasing ωR, a final bifurcation happens; below
which, the only stable phase is the disordered phase.
The ωR − β phase diagram, presented in Fig. 1(b),

shows similar phases. For large β, as ωR decreases, the

model successively shows transitions from the monostable
informed consensus to the bistable informed-misinformed
consensus, the multistable informed-misinformed-
disordered state, the bistable misinformed-disordered state,
and the disordered phase. In addition to these phases, the
model shows an informed consensus-disordered bistable
phase, the size of which increases with decreasing β,
denoted by ID in Fig. 1(b) [a small region to the left of
the filled circles in Fig. 1(a) (not annotated)].
We note that, although for small ωR the order-disorder

transition shows bistability and is discontinuous, as ωR
increases, both the mean field theory and simulations show
this transition becomes continuous at a single point (shown
by filled circles) in the ωR − ηC plane for each fixed, large
enough β (and at a single point in the ωR − β plane for each
fixed, small enough ηC), where IM − IMD (circles) and
IMD −MD (triangles) bifurcation lines meet. For larger
ωR, as the noise level increases, the system moves from the
ordered to the disordered phase gradually without passing
any phase transition [17].
The different phases of the system can be distinguished

by two order parameters. These are the size of the majority
group defined as

m ¼ max
b

NðbÞ
N

and the fraction of informed individuals

μ ¼ NðϵÞ
N

:

Here, NðbÞ is the number of individuals with belief b. The
phase diagram of the model can also be studied based on
the probabilities that these order parameters take different
values belonging to different phases starting from a generic
(random) initial condition. This is done in Figs. 2(a) and
2(b) in, respectively, ωR − ηC and ωR − β planes. The upper
panels show the contour plots of the probability that m
takes a large value Pðm > 0.9Þ belonging to the ordered
phase, and the lower panels show Pðμ > 0.9Þ belonging to
the informed consensus phase.
Inference capability maximized on edge of informed-

misinformed bistability region.—The fact that the system
can be found in different phases raises the following
important question: Under what conditions does the pop-
ulation achieve the highest capability to collectively infer
and represent the environment? To answer this question, we
assume the population lives in a changing environment in
which each environmental state lasts for τ time steps; after
which, the environment changes. We define the inference
capability of the population as the average fraction of the
individuals who infer the correct environmental state by the
end of an environmental state. This is plotted in color in
Fig. 3. In Fig. 3(a) [Fig. 3(b)], ηG ¼ 0 (ηC ¼ 0) and the
inference capability in the ωR − ηC (ωR − ηG) plane is
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FIG. 1. Phase diagram of model in (a) ωR − ηC plane and
(b) ωR − β plane. Blue dots denote mean field predictions,
whereas red markers indicate agent based simulation results.
Different phases are abbreviated in figures. I stands for informed
consensus, M for misinformed consensus, and D for disordered
phase. Here, h ¼ 1, ηR ¼ 0, n ¼ 100, and ηG ¼ 0. Other param-
eter values result in similar phase diagrams.
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plotted. Here, the simulation is run for T ¼ 5000 time steps
and τ ¼ 500. T is an averaging parameter and does not
affect the results.
In a changing environment, the population needs to

constantly respond to environmental changes by updating
its collective belief. This is not achieved in the misin-
formed-informed bistable phase because, in this phase, the
population is susceptible to a misinformed consensus. On
the other hand, for large ωR such that the system is well into
the informed consensus phase, individuals put a high
weight on their personal observation. Because the obser-
vation is noisy, this decreases the inference capability by
suboptimal use of the information provided by communi-
cation. The optimum inference capability, in which the
population optimizes its use of social and personal infor-
mation, is achieved in between these two extremes.
Interestingly, this is exactly the boundary of the monostable
informed consensus and the bistable informed-misinformed
consensus phases (indicated by red circles in Fig. 3). In this
region, the population is responsive enough to not get

trapped in a misinformed consensus (as happens for small
ωR) and, at the same time, is not too fast in responding
before taking the social information into account (as
happens for large ωR).
Noise increases adaptation to changing environment.—

As can be seen in Figs. 3(a) and 3(b), noise can be beneficial;
for a fixed ωR, the inference capability is maximized for a
finite noise level. To see how this happens, in Fig. 4(a), we
plot the fraction of informed individuals as a function of time
forωR ¼ 0.25 and three different noise levels. Here, τ ¼ 50.
For a too small noise level (red), it may take too long for the
population to update its belief in response to environmental
change, or it may even fail to do so. Increasing noise (orange
and blue) by facilitating switching between different con-
sensus states decreases the response time of the population.
However, too much noise (blue) decreases decision making
accuracy by decreasing the fraction of informed individuals.
Thus, there is a speed-accuracy trade-off associated with
increasing the noise, and the inference capability of the
population is maximized at an optimal noise level that
obtains the optimal trade-off (orange). This can be seen to
indeed be the case in Fig. 4(b), where the inference
capability as a function of noise is plotted. This shows that
noise in communication can increase the inference capabil-
ity of the population by increasing its responsiveness to
environmental changes in a resonancelike phenomenon.
Interestingly, as shown, the resonance coincides with the
edge of bistability.
We note that the benefit of noise is the most crucial in

fast changing environments. This can be seen in Fig. 4(c),
where the inference capability is plotted in color in the
ωR − ηC plane for τ ¼ 25. Whereas in a slowly varying
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by red circles. For both (a) comprehension and (b) production
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environment [such as τ ¼ 500 in Fig. 2(a)], the population
can reach a high inference capability, even for small
noise levels, by choosing a proper weight of personal
information with respect to social information (i.e., ωR); in
a fast changing environment where the decision making
speed is of higher importance, this is not possible, and
information use can only be optimized for large noise
levels (see the video in the Supplemental Material for a
visual manifestation [17]). This finding predicts that
communication systems operating in fast fluctuating envi-
ronments must have evolved to incorporate the higher
amount of noise.
In the Supplemental Material [17], we establish the

robustness of our findings by showing their validity for
other parameter values and different communication
network structures.
Discussion.—We have shown that a simple model of

collective information acquisition shows a rich phase
diagram with different consensus states. This raises the
following important question of how, by optimal use of
information, the population manages to avoid getting
trapped in a disadvantageous physical phase. It is argued
that this can happen by excessive use of social information
[18,19]: for instance, in social systems such as financial
markets [20]. In this regard, we have shown that informa-
tion use is optimized on the edge of bistability, where
misinformed consensus is barely stable. This boundary is
akin to a first order transition and is different from a critical
transition. Thus, this optimality condition contrasts with
many arguments that biological functions, such as the
information acquisition capability, are optimized at criti-
cality [21–30]; and it introduces an alternative way in
which biological populations can optimize their informa-
tion use. This seems to parallel some critiques of the so-
called criticality hypothesis [31]. We have also shown that
noise is beneficial for a communicating population by
increasing its responsiveness to environmental change in a
resonancelike phenomenon. In addition, the constructive
role of noise is the most pronounced in fast changing
environments. These findings can explain why, most often,
communication systems incorporate a large amount of
noise [14] and predict conditions over which a higher
amount of noise is observable in such systems.
The resonancelike phenomenon, through which the

right amount of noise optimizes the inference capability
of a population, is reminiscent of stochastic resonance
[32], through which it is shown that noise can serve a
positive role by increasing the information processing
capability: for instance, in neural systems [33–36]. As
we have shown, a similar phenomenon can be at work in
collective information acquisition, where the optimal sol-
ution to the speed-accuracy trade-off and the trade off
between the use of social and personal information is
achieved through a resonancelike phenomenon at the edge
of bistability.
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