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We created hexagonal rings on a semiconductor surface by atom manipulation in a scanning tunneling
microscope (STM). Our measurements reveal the generic level structure of a quantum ring, including its
single ground state and doubly degenerate excited states. The ring shape leads to a periodic potential
modulation and thereby a perturbation of the level structure that can be understood in analogy to band gap
formation in a one-dimensional periodic potential. The modulation can be enhanced or inverted by further
adding or removing atoms with the STM tip. Our results demonstrate the possibility of designing and
controlling electron dynamics in a tunable periodic potential, holding promise for the construction of two-
dimensional artificial lattices on a semiconductor surface.
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Quantum rings enable phase-coherent electron motion
along a closed path, offering the possibility to explore
fundamental quantum phenomena like the Aharonov-
Bohm effect [1–5], persistent currents [6–9], or many-body
correlations [10]. They can also be employed for imple-
menting logic gate function [11,12]. Quantum rings have
been realized in semiconductor materials, for example, by
growing quantum dots and transforming them to ringlike
structures [13] or by depleting a two-dimensional electron
gas using the electric field effect or local oxidation
techniques [3–5,9,10]. In this Letter, we use atom manipu-
lation [14] by cryogenic scanning tunneling microscopy
(STM) to assemble individual atomic rings on a semi-
conductor surface. This approach is unique in the sense that
it provides perfection in structure and the capability to
modify it at the atomic level. It will be shown, first, that the
assembled rings exhibit discrete electronic states that reflect
the generic features of quantum confinement along a closed
path [13,15]. Second, these states can be manipulated by
locally modifying the confining potential. We experimen-
tally demonstrate that a periodic modulation leads to states
with an energy level structure and a wave function character
that can be understood in analogy to electron behavior in a
one-dimensional (1D) periodic potential. Our system opens
up the possibility to design and control electron dynamics
in an artificial lattice created on a semiconductor surface.
As a template for the creation of the quantum rings, we

employed the InAsð111ÞA surface grown by molecular
beam epitaxy (MBE); details on the growth procedure are
given elsewhere [16]. All STM measurements were carried
out at a sample temperature of 5 K. Scanning tunneling
spectroscopy was used to probe the electronic density of
states of the quantum rings by recording the differential
tunnel conductance dI=dV. Conductance spectra were

acquired using lock-in technique with a peak-to-peak bias
modulation of 5–10 mV. MBE-grown InAsð111ÞA hosts a
low concentration (roughly 0.005 monolayer) of In adatoms
adsorbed on the vacancy sites of the (2 × 2)-reconstructed
surface [17]. These native adatoms are positively charged
[18] and can be readily repositioned by the STM tip [19,20].
To illustrate the electronic structure of the quantum rings

assembled on InAsð111ÞA, we start the discussion with a
linear chain composed of 30 In adatoms as shown in the
STM topography image in Fig. 1(a). The adatoms occupy
vacancy sites along a h211i in-plane direction and arep
3a0 ¼ 14.84 Å apart, where a0 ¼ 8.57 Å is the lattice

constant of the 2 × 2 In-vacancy reconstruction. Because of
the electrostatic potential induced by the positively charged
adatoms, the chain confines electrons belonging to surface
states of pristine InAsð111ÞA [16]. The resulting quantized
states indicate clear-cut quantum-particle-in-a-box behav-
ior. In a simple model, we describe the electron confine-
ment in our chains in terms of a 1D potential well of
dimension L. The energy of its quantized states is

En ¼
ℏ2k2n
2m� ¼ ℏ2

2m�

�
π

L

�
2

n2; n ¼ 1; 2; 3;…; ð1Þ

with kn denoting the wave vector of the nth state andm� the
effective electron mass. The energy scales with the square
of quantum number n as indicated by the blue bars in
Fig. 1(b).
The In30 chain in Fig. 1(a) can be rearranged to form a

hexagon-shaped In30 ring with the same interatomic
spacing of

p
3a0, see Fig. 1(c). To a first approximation,

we neglect the effect of the hexagonal shape and treat
the problem as a circular ring of circumference L ¼ 2πR.
The expected eigenstate energies are
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with R as the radius and l as the quantum number of angular
momentum [15]. The ground state with l ¼ 0 is a singlet,
whereas excited states with finite angular momentum are
doubly degenerate, as depicted by the red bars in Fig. 1(b).
Provided that our model qualitatively describes the real
structures in Figs. 1(a) and 1(c), one would expect to
observe a reduced number of conductance peaks for the
ring as compared to the chain.
To verify this, Fig. 1(d) compares conductance spectra of

the linear In30 chain and the In30 ring recorded with the
STM tip fixed at the positions marked in Figs. 1(a) and 1(c).
Starting with the chain [upper panel in Fig. 1(d)], eight
discrete conductance peaks are observed in the bias range
from −0.3 to 0.1 V, equivalent to an energy range from
0.3 eV below the Fermi level of the InAs surface (at sample
bias V ¼ 0) to 0.1 eV above the Fermi level. These
conductance peaks signify the chain-confined states with
n ¼ 1–8. Spatial conductance maps recorded at the respec-
tive peak energies reveal squared wave functions with n
lobes and (n − 1) nodes (see Supplemental Material Fig. S1
[21]) as we observed previously for chains with the shortest
possible interatomic spacing of a0 ¼ 8.57 Å [16]. It is
noted at this point that the confinement is primarily
determined by the length of the chain. The actual inter-
atomic spacing—varied within the range of a0–3a0 in the

present work—does not affect the experimentally
observed EðkÞ dispersion; it merely causes a rigid (pre-
sumably electrostatic) shift in the level energies (see
Supplemental Material Fig. S2 [21]).
Regarding the In30 ring [lower panel of Fig. 1(d)], we

find that the number of conductance peaks is indeed
reduced, in agreement with the predicted level scheme in
Fig. 1(b). Following the level assignment given in the
scheme, we observe the ground state with l ¼ 0 and
the excited states with l ¼ �1, �2, �3, and �4 within
the energy range probed in the measurement. It is noted
that, for hexagonal rings of different size (not shown in
Fig. 1), the measured energies scale as ðl=RÞ2 (see
Supplemental Material Fig. S3 [21]) indicating that
Eq. (2) captures the qualitative details of the level structure.
Nevertheless, of particular interest is the ∼10 mV splitting
of the eigenstate with l ¼ �3, which clearly goes beyond
the first-order approximation of confinement in a circular
ring. The splitting highlights the effect of the corner sites:
the wave functions associated with l ¼ �3 have 2jlj ¼ 6
lobes so that their positions can be in perfect registry either
with the corners or the sides of the hexagon. This circum-
stance lifts the degeneracy of the l ¼ �3 state because the
confining potential is enhanced at the corners compared to
the sides of the hexagon [23]. As a consequence, the
component localized at the corners is lower in energy (blue
spectrum) than that localized at the sides (red spectrum).
These observations illustrate the general principle of
quantum mechanics that symmetry lowering causes degen-
eracy lifting.

(a)

(b) (c)

(d)

FIG. 1. (a) STM topography image (100 pA, 100 mV) of a linear In30 chain on InAsð111ÞA, interatomic spacing:
p
3a0 ¼ 14.84 Å

with a0 the surface lattice constant of the 2 × 2 In-vacancy reconstruction. (b) Schematic level structure of free electrons confined in a
linear chain (blue bars) and a circular ring (red bars) illustrating the energy scaling according to Eqs. (1) and (2) in the main text. (c) STM
topography image (100 pA, 100 mV) of a hexagonal In30 ring with the same interatomic spacing of

p
3a0 as in (a). (d) (Upper)

Conductance spectra taken along the linear chain at the tip positions indicated in (a); eight dI=dV peaks are observed, signifying the
chain-confined states with quantum number n ¼ 1–8. (Lower) Conductance spectra taken along the hexagonal ring at the tip positions
indicated in (c); a reduced number of dI=dV peaks is observed, signifying the ring-confined states with quantum number of angular
momentum l ¼ 0, �1, �2, �3, and �4. The l ¼ �3 degeneracy is lifted as a result of the hexagonal ring shape. The dashed box in
(b) highlights the experimentally observed states in (d).
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The observed level splitting (degeneracy lifting) can be
understood in analogy to the occurrence of a gap predicted
for electrons in a 1D periodic potential. The effect becomes
more obvious when the potential modulation is further
enhanced by adding auxiliary adatoms at the corners, see
Fig. 2(a). The obtained conductance spectra in Fig. 2(b)
(upper panel) are qualitatively similar to those of the bare
In30 ring in Fig. 1(d); however, they indicate a significantly
larger splitting of the l ¼ �3 state, Δð�3Þ ¼ 23 mV. The
conductance map in the lower panel of Fig. 2(b) is
composed of 30 spectra consecutively recorded at the tip
positions numbered anticlockwise in Fig. 2(a), clearly
showing that the l ¼ �3 component at lower (higher)
energy is detected at the corners (sides) of the hexagon.
Consistently, the corresponding spatial conductance maps
[Figs. 2(c) and 2(d)] reveal that the lobes of the confined
wave function are centered at the corners for the component
at lower energy (implying stronger binding), while they are
centered in between of the corners for the component at
higher energy (weaker binding). The corners can be viewed
as artificial atoms (sites of enhanced confinement) coupled
through the straight sides of the hexagonal ring structure.
To further rationalize the observed energy splitting

[Fig. 2(b)] and the confined wave functions [Figs. 2(c)
and 2(d)], we draw an analogy to the case of electrons in a
1D periodic potential, where energy gaps occur for wave
vectors equal to half a reciprocal lattice vector [24]: first
considering the lowest-lying energy gap, the state at the
lower band gap edge is of fully antibonding s orbital
character (σs�), whereas the state at the upper band gap
edge is of fully bonding p orbital character (σp). Indeed, the
spatial conductance maps at l ¼ �3 are consistent with the
expected wave function symmetry because the state at

lower energy [Fig. 2(c)] is centered at the artificial atoms
and has nodes in between (σs�), while the state at higher
energy [Fig. 2(d)] has nodes at the atomic positions and
lobes in between (σp). Returning to the 1D potential case,
higher-lying energy gaps occur at wave vectors associated
with larger reciprocal lattice vectors. Likewise, we expect
energy splittings in our rings also for states with l ¼
�6;�9;�12;… for which the number of wave function
lobes (nodes) is a multiple of 6. States of all other quantum
numbers are expected to show no splitting. This behavior is
confirmed by a simple model considering the matching
between the probability density of a confined state and a
perturbation potential of hexagonal symmetry (see
Supplemental Material Sec. IV [21]).
Finally, to access states of higher quantum number l, we

assembled an enlarged ring composed of an increased
number of atoms [see the In78 structure in Fig. 3(a)
(interatomic spacing a0 ¼ 8.57 Å)]. The larger circum-
ference and the enhanced confinement lead to a reduced
energy level spacing. In addition, we accomplished the
inverted case of potential modification by removing corner
atoms from the ring. As a consequence, the potential is
reduced at the corners and the artificial (now longish) atoms
are now given by the remaining 13 atomic chains, which
are separated by the vacant atomic sites at the corners.
States of quantum numbers up to �9 can be readily
resolved as documented by the conductance spectra in
Fig. 3(b). Because of the reduced level spacing, the ground
state (l ¼ 0) is not resolved as a separate peak; it merges
into the broadened low-energy edge of the l ¼ �1 state.
Closer inspection of the spectra reveals a total of three
splittings ΔðlÞ at l ¼ �3 (∼6 mV), �6 (∼12 mV), and
�9 (∼17 mV), respectively, in agreement with the

(a) (b) (c)

(d)

FIG. 2. (a) STM topography image (100 pA, 100 mV) of an In36 ring having six auxiliary In adatoms to enhance the confinement at the
corners. (b) (Upper) Conductance spectra taken at the tip positions marked in (a) revealing the confined states with l ¼ 0 to �5; the
splitting at l ¼ �3 is more than twice the splitting observed for the bare In30 ring in Fig. 1. (Lower) Conductance map composed of 30
spectra consecutively recorded at the tip positions numbered anticlockwise in (a), the l ¼ �3 component at lower (higher) energy is
detected at the corners (sides) of the hexagon. (c) Spatial conductance map (left) recorded for the l ¼ �3 component at lower energy
revealing that the lobe structure of the confined wave function is equivalent to an antibonding state of s orbital character (σs�), as
illustrated by the scheme on the right. (d) As in (c) but recorded for the component at higher energy, the lobe structure is equivalent to a
bonding state of p orbital character (σp).
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expectations discussed above. For the corresponding
squared wave functions, we observe a total of 2jlj lobes
as inferred from the close-up conductance maps in
Fig. 3(c). At a given jlj, the lobes (nodes) of the wave
function at higher (lower) energy are in registry with the
corners, which is consistent with the weaker binding in
those locations. These features are clearly observed in the
conductance maps for l ¼ �6 and l ¼ �9, whereas they
are less obvious for the case of the lower quantum number
l ¼ �3. This limitation is again a consequence of the
reduced level spacing resulting from the enlarged circum-
ference of the ring.
In conclusion, our results show that atommanipulation on

the InAsð111ÞA surface allows one to engineer atomically
precise quantum rings. These rings exhibit quantized states
that emerge from the electrostatic confinement of surface-
state electrons [16]. The energy spectrum of the quantized
states is qualitatively consistent with 1D confinement along
a closed loop. The hexagonal ring shape (predefined by the
surface symmetry) leads to a periodic potential modulation
that weakly perturbs the states. The result of this perturba-
tion can be understood in analogy to the behavior of
electrons in a 1D periodic potential. The modulation of
the potential can be enhanced or even inverted by further
adding or removing individual atoms with the STM tip. We
anticipate that the present approach can be extended to
construct two-dimensional artificial lattices (known as
“quantummaterials”) [25], some ofwhich have been created
recently by atom manipulation on metal surfaces [26–28].
Constructing artificial lattices on a semiconductor surface
has obvious advantages because screening effects are

reduced as compared to metals. This allows for a tunable
electrostatic confinement of carriers by charged (and repo-
sitionable) point defects and enables the addressability of
STM-generated structures by external gate electrodes [29].
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