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In spatially periodic Hermitian systems, such as electronic systems in crystals, the band structure is
described by the band theory in terms of the Bloch wave functions, which reproduce energy levels for large
systems with open boundaries. In this paper, we establish a generalized Bloch band theory in one-
dimensional spatially periodic tight-binding models. We show how to define the Brillouin zone in non-
Hermitian systems. From this Brillouin zone, one can calculate continuum bands, which reproduce the
band structure in an open chain. As an example, we apply our theory to the non-Hermitian Su-Schrieffer-
Heeger model. We also show the bulk-edge correspondence between the winding number and existence of

the topological edge states.

DOI: 10.1103/PhysRevLett.123.066404

The band theory in crystals is fundamental for describing
electronic structure [1]. By introducing the Bloch wave
vector k, the band structure calculated within a unit cell
reproduces that of a large crystal with open boundaries.
Here it is implicitly assumed that the electronic states are
almost equivalent between a system with open boundaries
and one with periodic boundaries, represented by the Bloch
wave function with real k. This is because the electronic
states extend over the system.

Recently, non-Hermitian systems, which are described by
non-Hermitian Hamiltonians have been attracting much
attention. These systems have been both theoretically and
experimentally studied in many fields of physics [2-71]. In
particular, the bulk-edge correspondence has been intensively
studied in topological systems. In contrast to Hermitian
systems, it seems to be violated in some cases. The reasons
for this violation have been under debate [52,72-94].

One of the controversies is that in many previous works,
the Bloch wave vector has been treated as real in non-
Hermitian systems, similarly to Hermitian ones. In
Ref. [83], it was proposed that in one-dimensional (1D)
non-Hermitian systems, the wave number k becomes
complex. The value of = e’ is confined on a loop on
the complex plane, and this loop is a generalization of the
Brillouin zone in Hermitian systems. In non-Hermitian
systems, the wave functions in large systems with open
boundaries do not necessarily extend over the bulk but are
localized at either end of the chain, unlike those in
Hermitian systems. This phenomenon is called the non-
Hermitian skin effect [83]. Thus far, how to obtain the
generalized Brillouin zone has been known only for simple
systems.

In this paper, we establish a generalized Bloch band theory
in a 1D tight-binding model in order to determine the
generalized Brillouin zone Cﬁ for p = ek, k e C. First of

0031-9007/19/123(6)/066404(6)

066404-1

all, we introduce the “Bloch” Hamiltonian (k) and rewrite
it in terms of B as H(p). Then the eigenvalue equation
det[H(B) — E] = 0 is an algebraic equation for /5, and we
let 2M be the degree of the equation. The main result is
that when the eigenvalue equation has solutions f;(i =
1,....2M) with |, < |B>| < -+ < |Pom—1| < |Pomls Cp is
given by the trajectory of f), and ), under a condition
|Prl = |Puis1|- Tt is obtained as the condition to construct
continuum bands, which reproduce band structure for a large
crystal with open boundaries. We note that in Hermitian
systems, this condition reduces to C:|f| = 1, meaning that
k becomes real. In previous works, systems with M = 1 have
been studied in general cases [83] and in limited cases [95].

A byproduct of our theory is that one can prove the bulk-
edge correspondence. The bulk-edge correspondence has
been discussed, but in most cases, it has not been shown
rigorously but by observation on some particular cases,
together with an analogy to Hermitian systems. It in fact
shows that the bulk-edge correspondence for the real Bloch
wave vector cannot be true in non-Hermitian systems. In
this Letter, we show the bulk-edge correspondence in the
non-Hermitian Su-Schrieffer-Heeger (SSH) model with the
generalized Brillouin zone and discuss the relationship
between a topological invariant in the bulk and existence of
the edge states.

We start with a 1D tight-binding model, with its
Hamiltonian given by

N q
H == Z Z Z ti,ﬂycz+i,ﬂcn.w (1)

n i=-N pv=1

where N represents the range of the hopping and ¢ represents
the degrees of freedom per unit cell. This Hamiltonian can be

non-Hermitian, meaning that 7; ,, is not necessarily equal to
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12, ,,- Then one can write the real-space eigen-equation as

H|w) = Ely), where the eigenvector is written as |y) =
T . .

(cesWils - W1 goWals s Wa g, ---)' in an open chain.

Thanks to the spatial periodicity, one can write the eigen-
vector as a linear combination:

Vo= $in $u=B)dd, w=1....9. (2
J

By imposing that (/),(1{,), is an eigenstate, one can obtain the
eigenvalue equation [e.g., see Eq. (7)] for § = f3; as

det [H(B) — E] = 0. (3)

Here, this eigenvalue equation is an algebraic equation for
with an even degree 2M in general cases [96].

One can see from Eq. (2) that  corresponds to the Bloch
wave number k € R via # = ¢’* in Hermitian systems. The
bulk-band structure for the reality of k reproduces the band
structure of a long open chain. When extending this idea to
non-Hermitian systems, we should choose values of f such
that the bands of the Hamiltonian H (/) reproduce those of
a long open chain (Fig. 1). The levels are discrete in a finite
open chain, and as the system size becomes larger, the
levels become dense and asymptotically form continuum
bands (Fig. 1). Therefore, in order to find the generalized
Brillouin zone Cp, one should consider the asymptotic
behavior of level distributions in an open chain in the limit
of a large system size. In Hermitian systems, || is equal to
unity, meaning that the eigenstates extend over the bulk. On
the other hand, in non-Hermitian systems, |3| is not
necessarily unity, and these states may be localized at
either end of the chain. Therefore, these bands cannot be
called bulk bands, but should be called continuum bands.
These states are incompatible with the periodic boundaries.
The continuum bands are formed by changing f contin-
uously along Cp, as we show later.

Next, we find how to determine the generalized Brillouin
zone Cy, which determines the continuum bands. Here we
number the solutions B;(i =1, ...,2M) of Eq. (3) so as to

(a) Open chain (b) Generalized Bloch
A

ReE, A k_
<—> Continuum
bands
I— — -
> L HP), BeCy
FIG. 1. Schematic figure of the band structure (a) in a finite

open chain with various system sizes L, and (b) in the generalized
Bloch Hamiltonian. The vertical axis represents the distribution
of the complex energy E.

satisfy [B1| < |fo] < -+ < [Bapy—1| < |Bau|. We find that the
condition to get the continuum bands can be written as

|ﬁM| = |ﬁM+1 > (4)

and the trajectory of Sy, and f,; gives Cy. In Hermitian
systems, we can prove that Eq. (4) becomes |fy| =
|Brys1] =1 [96], and Cy is a unit circle, || = 1. When
M =1, this condition physically corresponds to a con-
dition for the formation of a standing wave in an open chain
as proposed in Ref. [83]. We discuss this point in Sec. ST in
the Supplemental Material [96].

To get Eq. (4), we focus on boundary conditions in an
open chain. Here we provide an outline of the process by
which we arrive at Eq. (4), and we give a detailed
discussion in Secs. SII and SII in the Supplemental
Material [96]. We impose the wave function in Eq. (2)
to represent an eigenstate. Apart from the positions near the
two ends, it leads to the eigenvalue equation (3). The
boundary conditions place another constraint on the values
of #;(i =1,...,2M) in the form of an algebraic equation.
We now suppose the system size L to be quite large and
consider a condition to achieve densely distributed levels
(Fig. 1). The equation consists of terms of the form
(BiBi, -+ Pi,)~. When [By| # [Ba1|, there is only one
leading term proportional to (B - - - foy)F, which does
not allow continuum bands. Only when |3,| = |By,1| are
there two leading terms proportional to (By B2 -+ - Bom)*
and t©0 (By1Pysa - Pou)t. In such a case, the relative
phase between f,, and fj;,; can be changed almost
continuously for a large L, producing the continuum bands.
We note that our condition [Eq. (4)] is independent of any
boundary conditions. In Ref. [83], it was proposed that the
continuum bands require |$;| = |f3;|. Nonetheless, this is
not sufficient; except for the case |fy;| = |41/, it does not
allow the continuum bands.

We apply Eq. (4) to the non-Hermitian SSH model as
shown in Fig. 2(a). It is given by

Y Y
H = Z [(tl + %) cj;,Acn,B + (fl - %) CZ,BCn,A
n

72 72
+ (fz + 3) CZ,Banrl,A + (fz - E) CL—«—I,ACH.B

+t3(C,T1,ACn+1,B + CILJrl,BCn,A)]’ (5)

where 1, 15, 13, 71, and y, are real. The generalized Bloch
Hamiltonian 7(#) can be obtained by a replacement
e’* — B, similarly to Hermitian systems, as H(f) =
R (p)o. +R_(p)o_, where o, = (0, +ic,)/2, and
R.(p) are given by
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(b) t, 1 t,=1/5, y,=4/3, y,=0 (C)t\03 t,=1.1,4,=1/5,y,=0 (d) t,=0.5, t;=1/5, y,= 5/3 v,=1/3
1[b-1) t,=1.1 1 v,=4/3 "{a-1)t,=0.3
g / f\ g K\ g (\
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FIG. 2. (a) Non-Hermitian SSH model. The dotted boxes

indicate the unit cell. (b)-(d) Generalized Brillouin zone Cy of
this model. The values of the parameters are (b) t, = 1, 3 = 1/5,
y1 =4/3, and y, = 0, with (b-1) t;, = 1.1 and (b-2) 1, = —1.1;
(©)t;,=03,1,=1.1,13 = 1/5,and y; = 0, with (c-1) y, =4/3
and (c-2) y, = —4/3;and (d) 1, = 0.5, 13 = 1/5, y; = 5/3, and
7, = 1/3, with (d-1) t;, = 0.3 and (d-2) #; = —0.3.

R, (p) = (tz _y_22>ﬁ_1 + (fl +7/_21) + 130,

R_(B) =t + <t1 —%1) + <t2 +y2—2>ﬂ- (6)

Therefore, the eigenvalue equation can be written as

R, (B)R-(B) = E, (™)

which is a quartic equation for f; i.e., M = 2, having four
solutions f3;(i=1,...,4) satisfying || < |$2] < |83| < |f4l-
Then Eq. (4) is given by |f,| = |f5] [96].

The trajectory of f, and f; satisfying the condition
|p2| = |p5| determines the generalized Brillouin zone Cy,
and it is shown in Figs. 2(b)-2(d) for various values of the
parameters. It always forms a loop enclosing the origin on
the complex plane. Nonetheless, we do not have a rigorous
proof that Cy is always a single loop encircling the origin.
We find some features of Cy. First, our result does not
depend on whether || is larger or smaller than unity, as
opposed to the suggestions in previous works [57,83]; in
Fig. 2(d-2), || takes both values more than 1 and values
less than 1. Second, Cy can be a unit circle even for non-
Hermitian cases; for example, when #; =13 =y, =0.
Finally, C4 can have cusps, corresponding to the cases
where three solutions share the same absolute value [96].

We calculate the winding number w for the Hamiltonian
H(p). Thanks to the chiral symmetry, w can be defined
as [96]

(@)3 (b) (c) 8
2 g1 @ ; Z/\
tz 1.4 :E> \-Ii- N
1 < as
£ £ N
0 w=0| 2 -
s0 — 3
-3 -1 0 1 3 3 -2 -1012 3 -1 1 3

Re(R +/-(B))

FIG. 3. Phase diagram and bulk-edge correspondence with
t3=1/5,y, =5/3, and y, = 1/3. (a) Phase diagram on the
t; — t, plane. The blue region represents that the winding number
is 1, and the orange region represents that the system has
exceptional points. Along the black arrow in (a) with #, = 1.4,
we show the results for (b) the winding number, (d) energy bands
in a finite open chain, and (e) the continuum bands from the
generalized Brillouin zone Cy. The edge states are shown in red in
(d). (c) shows 7, (red) and Z_ (blue) on the R plane with
= 1 and th = 1.4.

Wy —w_ 1

W=——, WiZﬁ[angi(ﬂ)]cﬁ’ (8)

where [arg R.(f)]c, means the change of the phase of

R (p) as f goes along the generalized Brillouin zone Cj in
a counterclockwise way. It is proposed that w corresponds
to the presence or absence of the topological edge
states [83].

We show how the gap closes in our model. It closes
when E=0, ie, R, (f)=0 or R_(f)=0. Let =
p(i =1,2,a = +, —) denote the solutions of the equation
R,(p) =0, with |p{| < |p5]. When E =0 is in the con-
tinuum bands, Eq. (4) should be satisfied for the four
solutions ﬂl-i (i=1, 2). It can be classified into two
cases, (@) |Bf] < |p4] = 5| < [B3“l(a = +.-), and
(b) 182] < 87| = |B%] < |B5](a = +.-). In case (a), as
we change one parameter, the gap closes at £ = 0, and w,
and —w_ change by 1 at the same time, giving rise to the
change of the winding number by unity. On the other hand,
in case (b), only one of the two coefficients R () becomes
zero, and it represents an exceptional point.

We obtain the phase diagram on the #; —#, plane in
Fig. 3(a) and on the y; — y, plane in Fig. 4(a). In these
phase diagrams, the winding number w is 1 in the blue
region. By definition, w changes only when R () = 0 on
the generalized Brillouin zone Cp, and the gap closes. The
energy bands in a finite open chain calculated along the
black arrow in Fig. 3(a) are shown in Fig. 3(d), and one can
confirm that the edge states appear in the region where
w=1. In addition, the continuum bands using Cjy
[Fig. 3(e)] agree with these energy bands. In Fig. 4(b),
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FIG. 4. Phase diagram and bulk-edge correspondence with
t, =0, 1, =1, and 3 = 1/5. (a) Phase diagram on the y; — y,
plane. The blue region represents that the winding number is 1,
and the orange region represents that the system has exceptional
points. (b) Energy bands calculated along the green arrow in
(a) with y, = 1.4. Note that y. ~ 1.89. The edge states are shown
in red. (c),(d) Loops ¢ (red) and Z_ (blue) on the R plane. The
values of the parameters are (c) y; = —1 and y, = 1.4, and
(d) y; = 2.1 and y, = 1.4. Note that Z_ passes the origin in (d),
which corresponds to exceptional points.

we give the energy bands calculated along the green
arrow in Fig. 4(a), and the edge states appear similarly
to Fig. 3(d). On the other hand, the system has the
exceptional points in the orange region. The phase with
the exceptional points extends over a finite region [96].

We discuss the bulk-edge correspondence in our model.
The loops ¢.. drawn by R..(f) on the R plane are shown in
Fig. 3(c) and in Figs. 4(c) and 4(d) for certain values of the
parameters. In both Figs. 3(c) and 4(c), the system has
the winding number w = 1, since both £ and #_ surround
the origin O, leading to w, = —1 and w_ = 1. In Fig. 4(a),
one can continuously change the values of the parameters
to the Hermitian limit, y;, y, — 0, while keeping the gap
open and while w =1 remains. The same is true for
Fig. 3(a). Therefore, by following the proof in Hermitian
cases [97], one can prove the bulk-edge correspondence
even for the non-Hermitian cases, and the existence of zero-
energy states is derived [96]. On the other hand, £_ passes
O as shown in Fig. 4(d), where the system has exceptional
points. We note that the winding number is not well defined
in this case.

In summary, we establish a generalized Bloch band
theory in 1D tight-binding systems and obtain the condition
for the continuum bands. We show the way to construct the
generalized Brillouin zone Cp, which is fundamental for
obtaining the continuum bands. Here the Bloch wave
number k takes complex values in non-Hermitian systems.
Our conclusion, || = |fu1], is physically reasonable in
several aspects. First, it is independent of any boundary
conditions. Thus, for a long open chain, irrespective of any

boundary conditions, the spectrum asymptotically
approaches the same continuum bands calculated from
Cp [96]. Second, it reproduces the known result in the
Hermitian limit, i.e., |f| = 1. Third, the form of the
condition is invariant under the replacement f — 1/p.
Suppose the numbering of the sites is reversed by setting
n =L+ 1—n for the site index n(=1,...,L); then p
becomes ' = 1/f, but the form of the condition is
invariant: Sy, = |f),,]-

Through this definition of the continuum bands, one can
show the bulk-edge correspondence without ambiguity by
defining the winding number w from the generalized
Brillouin zone in 1D systems with chiral symmetry.
Indeed, we showed that the zero-energy states appear in
the non-Hermitian SSH model when w takes nonzero
values, and we also revealed that these states correspond
to topological edge states. It is left for future works to
determine how to calculate the continuum bands for
systems with other symmetries.

The construction of the generalized Brillouin zone can be
extended to higher dimensions as well. In two-dimensional
(2D) systems, we introduce the two parameters
f*(=e™*) and p’(=e*). Then the eigenvalue equation
det[H(p*,p*) — E] = 0, where H(p*, p”) is a 2D general-
ized Bloch Hamiltonian, is an algebraic equation for * and
B If we fix 7 (f*), this system can be regarded as a 1D
system, and the criterion is given by |3}, | = |} il
(1P, = |,H%,,erl ), where 2M, (2M,) is the degree of

the eigenvalue equation for p* ($”). Thus, we can get
the conditions for the continuum bands. Nevertheless, it is
still an open question how to determine the generalized
Brillouin zone in higher dimensions.

We also apply our theory to the tight-binding model
proposed in Ref. [74], and we show that the Bloch wave
number k has a nonzero imaginary part, and the bulk-edge
correspondence can be established with k € C [96]. We
conclude that some previous works on the bulk-edge
correspondence using the reality of the Bloch wave vector
require further investigation.
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