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Floquet Chiral Magnetic Effect
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A single Weyl fermion, which is prohibited in static lattice systems by the Nielsen-Ninomiya theorem, is
shown to be realized in a periodically driven three-dimensional lattice system with a topologically
nontrivial Floquet unitary operator, manifesting the chiral magnetic effect. We give a topological
classification of Floquet unitary operators in the Altland-Zirnbauer symmetry classes for all dimensions,
and use it to predict that all gapless surface states of topological insulators and superconductors can emerge

in bulk quasienergy spectra of Floquet systems.

DOI: 10.1103/PhysRevLett.123.066403

In 1981, Nielsen and Ninomiya proved that a single
Weyl fermion cannot be realized in lattice systems [1,2].
This theorem places a fundamental constraint on band
structures due to the topology of the Brillouin zone. Weyl
fermions have recently played a key role in cross-fertilizing
ideas between high-energy physics and condensed-matter
physics. A prime example is the prediction of Weyl
semimetals [3,4], where the low-energy effective field
theory of Weyl fermions predicts novel electromagnetic
responses originating from the chiral anomaly [5-8]. In
particular, the observations of the surface Fermi arc [9-15]
and anomalous transport [16—19] have aroused consider-
able interest. However, if a system is defined on a lattice
and thus anomaly-free, the Nielsen-Ninomiya theorem
dictates that a Weyl fermion be accompanied by its partner
with opposite chirality. By the same token, an anomaly
induced response known as the chiral magnetic effect
(CME) [20] does not occur in equilibrium [21], and
numerous proposals to circumvent this difficulty have been
made [22-29].

In this Letter, we demonstrate that a single Weyl fermion
can be realized on a periodically driven lattice, thereby
overcoming the above limitations. In periodically driven
(Floquet) systems, the unitary time-evolution operator over
one period defines an effective Hamiltonian and the
associated quasienergies [30]. Despite the apparent sim-
ilarity to static systems, Floquet systems enable the
realization of exotic phases that cannot be achieved in
equilibrium, such as anomalous topological insulators
[31,32] and time crystals [33,34]. The key idea of our
proposal is an emerging topological structure in unitary
operators associated with the periodicity of quasienergies
[31]. We here show that a driving protocol for a three-
dimensional (3D) Thouless pump [31,35] given by a
topological Floquet unitary operation realizes a single
Weyl fermion in a 3D lattice system, thereby providing
a platform to observe the CME. We demonstrate that chiral
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transport emerges under a topological 3D Floquet drive due
to an applied synthetic magnetic field, leading to a Floquet
realization of the CME. Our proposal can be implemented
by using ultracold atomic gases, where the Thouless pump
has been realized experimentally [36,37].

Furthermore, by exploiting the correspondence between
anomalous gapless spectra and topological unitary oper-
ators, we provide a topological classification of Floquet
unitary operators in the Altland-Zirnbauer symmetry
classes. In general, a wide variety of lattice-prohibited
band structures under given symmetries can be realized as
gapless surface states of topological phases [38]. The
impossibility of pure lattice realization of surface states
is deeply connected with their symmetry-protected gap-
lessness via quantum anomalies [39-41]. We show that the
classification of topological Floquet unitaries, which
generically offer symmetry-protected gapless quasienergy
spectra, coincides with that of gapless surface states of
static topological insulators or superconductors (TIs/
TSCs). This correspondence strongly suggests that one
can realize any gapless surface states of TIs/TSCs as bulk
quasienergy bands of Floquet systems, even though they
cannot be realized in static lattice systems.

General strategy.—We first explain our strategy to
obtain a lattice-prohibited band structure in a Floquet
system. We consider a periodically driven system of
non-interacting fermions on a lattice. A periodically driven
system is characterized by a Floquet operator, which is
defined as a time-evolution operator over one period [30].
Since a crystal momentum is a good quantum number, a
Floquet operator defines a map from the Brillouin zone to a
space of unitary matrices. To characterize topology of a
Floquet operator, we assume that a Hilbert subspace of the
system is mapped onto itself by the Floquet operator [31].
This condition is achieved by, e.g., (i) using generalized
adiabaticity [31,42], in which a time evolution is restricted
to a low-energy subspace due to a large separation between
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low and high energy bands, or (ii) some fine-tuning of a
driving protocol [43]. We hereafter refer to the Hilbert
subspace closed in the time evolution over one period as
“lower” Floquet bands, which play a role similar to
occupied bands of static insulators [31].

Let us denote the Floquet operator restricted to the lower
Floquet bands by U(k), where k is a crystal momentum.
When U (k) offers a topologically nontrivial map from the
Brillouin zone to a unitary group U(N) (N is the number of
the lower Floquet bands), the lower Floquet bands possess
gapless quasienergy spectra, since a gapped Floquet oper-
ator can continuously be deformed into a trivial unitary,
e.g., U(k) =1y [31,44]. Since the gapless quasienergy
spectra cannot be gapped out by a continuous deformation
of the Floquet operator, a topological Floquet operator is
expected to exhibit a topologically protected gapless band
structure, such as the case of Weyl fermions. In fact, it has
been shown [31,45] that a single chiral fermion, which is
forbidden in a static one-dimensional lattice, can be
realized with a Floquet operator that has a nontrivial
winding number. Our strategy for the realization of a single
Weyl fermion is to construct a driving protocol that gives a
Floquet operator with a nontrivial topological number in a
3D lattice system.

Model.—Let us now proceed to a construction of a model
with a topological Floquet operator. We consider spin-half
fermions on a cubic lattice L with a sublattice structure in
the third direction:

LC = {<m17m27n;%> 'mlamQamS € Z} (1)

where the sublattice L., (Lq) corresponds to the sites with
even (odd) mj [purple (light blue) points in Fig. 1(a)]. The
lattice constant ay, is set to be unity: a,, = 1. The key
ingredient of our model is spin-selective Thouless pumps
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FIG. 1. (a) Schematic illustration of the fermion pump by time-
evolution operators U/ (j = 1, 2) and Uj, 5 given in Egs. (2) and
(3) in the 3D lattice with sublattice structures L., and L4 in the
third direction. Thick arrows show the spin directions of
fermions. (b),(c) Driving protocols of the model (b) without
and (c) with a magnetic field. The time-evolution operator U/,
describes a sudden switch-on and switch-off of a quadrupole
potential, and U/ describes hopping in the third direction with a
Hamiltonian H.

[31,35,43] whose time-evolution operators Z/lji G=12
are given by

Ut =Y (PPl weep+ (PHPchaces). ()
xafp

where x = (X1, x,,x3) € L¢ denotes the lattice site, e; is a
unit vector in the x; direction, and ¢, = (¢y 4, ¢y, | ) is the
annihilation operator of a fermion with spin @ (1 or |) at
site. x. The matrix P} := (69 +0;)/2 is a projection
operator on a spin state ¢; = +1, with 6y and ¢; (j =1,
2, 3) being the 2 x 2 identity matrix and the Pauli matrices.
From the projective nature of Pji, under the pump Z/{j+ U;),
fermions in a spin state 6; = +1 (—1) are displaced by one
lattice site in the positive (negative) x; direction, while
fermions in a spin state 6; = —1 (+1) are not, thereby
achieving spin-selective transport [see red and green arrows
in Fig. 1(a)]. We also introduce spin-selective Thouless
pumps U;- 5 which displace fermions by a half lattice site in
the x5 direction:

Uiy =Y [(PF)Pey,

x.afp

(e5/2). oCxp + (P:F) ﬂCx acxﬂ} (3)

We note that fermions can be displaced between the unit
cells by U5 i3 [see blue arrows in Fig. 1(a)].

The driving protocol of our topological pump is con-
stituted from eight successive applications of U, U5, and
L{hjf3 as shown in Fig. 1(b), where the total time-evolution
operator U} for the whole four bands over one cycle is
given as follows [45]:

U <= UTUG UTUS U U UTUS s = i VP (k).
k
(4)
where k = (ky, ky, k3) is the crystal momentum. Then, the

Floquet operator V¥!(k) is decomposed into two 2 x 2
matrices: V*(k) = U(k) @ U (k), where

U(k) = Uy (ki) Uy 3(k3) Uz (k2) Uy 5 (k3)
X U (k1) Uy 3(k3)Us (k) U,y 5(ks),  (5)
and U (k) = U(ky, k. ks —27), U7 (k) := Pfe™™* + P}
and U}, 3(k) == U;(k/2) represent the Floquet operators of

the spin-selective Thouless pumps. Here we focus on U (k)
as a Floquet operator of lower Floquet bands. A straight-
forward calculation shows that U(k) stays the constant
value —o, if k belongs to the boundary of the Brillouin zone
T? := [-x,#]> and hence satisfies the periodic boundary
condition on T°.

Let hy(k) be an effective Hamiltonian defined by
U(k) =: exp[—ihq(k)], where the driving period T is
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FIG. 2. (a),(b) Quasienergy spectra of U(0,k;) with flux
(a) ¢ = 0 and (b) ¢ = 1/20. The color represents the expectation
value S5 of o3 for each eigenstate according to the gauge shown
on the right. (¢) Pumped charge AQ as a function of flux ¢ for the
initial state (8) at half-filling and zero temperature without (red)
and with (blue) spin-mixing perturbation. The orange points are
the results at finite temperature 7 = 0.1Ep [Ep is the Fermi
energy]. (d) Hopping amplitudes #; for preparing the initial state.

set to unity. Since the quasienergies e(k) [eigenvalues
of he(k)] satisfy cosle(k)] = Tr[U(k)]/2, e(k) =
+cos™[2cos?(k;/2)cos?(ky/2)cos? (k3 /2) — 1] follows
from Eq. (5). Therefore, ¢(k) has only one gapless point
atk = 0. Since U(k) is expanded around k = 0 as U(k) ~

— ik -6 from Uj (k) ~ 6y F iP;k for k~0, we have
het (k) ~ k - 6, which clearly indicates the presence of a
single left-handed Weyl fermion. The presence and stability
of this single Weyl fermion is protected by a nontrivial
topology in U(k). In fact, U(k) achieves a topologically
nontrivial map from T° to SU(2) = $* (3D sphere) with a
unit winding number [69]:

dk <
W::
/247:2”22

where R; := U(k)"0; U(k). We note that our model should
be distinguished in topology from the previous proposals
for realizing Floquet Weyl semimetals [70-79], where the
Weyl nodes always appear in pairs in accordance with the
Nielsen-Ninomiya theorem.

Floquet chiral magnetic effect.—When a magnetic field
is applied, a Weyl fermion shows chiral transport antipar-
allel to the applied magnetic field, a phenomenon known as
the CME [20]. A magnetic field can be introduced in our
model through the replacement of U5 in Eq. (5) with

UisU,, where U, = exp(—i2mx,x,)

¢FTrRRR] =1,  (6)
|

is the time

evolution operator induced by a sudden switch-on and -off
of a quadrupole potential [80,81]. Since L[;Uzi(kz)uq =
Us (ky — 2mgpx,), the effective Hamiltonian near k = 0 is
given by h.gs=(k+A) -6 with A= (0,-27¢x,0),
which describes a Weyl fermion under a magnetic field

= (0,0, -27¢). However, U, couples the lower and
higher Floquet bands. Therefore, to decouple them, we
need an additional time evolution ¢/ with duration 7z, under
a Hamiltonian H, = J; ) (iCyi(e,2)¢x +Hec.)  with
4Jt, = n¢p at the end of the cycle [see Fig. 1(c)]. Since
k, and k5 remain as good quantum numbers, the Floquet
operator U acting on the lower Floquet band is decom-
posed into a set of one-dimensional lattice models as Uy =
> ko ks U(k,, k3) [45]. Figures 2(a) and 2(b) show the
quasienergy spectra of U(0, k3) without (¢ = 0) and with
(¢p = 1/20) a magnetic field, respectively, where the color
of each point represents the spin polarization Sj:=
(u,(ks)|o3|u,(ks)) of the eigenstate |u,(k3)). Because of
the flux ¢, the Landau gap with size 2w; = 2/2B; ~ 1.6
opens near the Weyl point at k3 = 0, and a spin-polarized
chiral fermion emerges inside the gap.

The chiral dispersion emerging under a magnetic field
produces a current parallel to the field, leading to a Floquet
realization of the CME. To see this, we calculate
the amount of charge AQ pumped during one period
using AQ := [[ dtJ5(t), where J3(2) = [* (dk;/2m)x
Tr[p,0k,H (k5. )] is a current parallel to the magnetic field,
p; 1s the density matrix at time 7, and H(ks, t) is the time-
dependent Hamiltonian. As shown in Ref. [31], the pumped
charge can be rewritten in terms of the quasienergy
e, (k3) of U(ka, ks) [b specifies a Landau level] as

AQ—kZ/_”dksz ag"’( Oeuolks) ()

where fy, ,(k3) := (k3. ka, b|polks, kp, b) is a distribution
function of the Floquet eigenstates |k3, k5, b) in the initial
state. As an initial state, we here take an equilibrium state
under a Hamiltonian Hy = ), , €y(q )C4.aCq.q ON the lattice
L with dispersion relation ¢€((q) = —t3cos(q3/2) —

1 cos q; — t, cos g, [t; > 0 is the hopping amplitude along
the x; direction, see Fig. 2(d)],

Z fro(9)lg. @)

q.a=1.|

0{g- alo, (8)

where frp(g) is the Fermi-Dirac distribution function with
Fermi energy Ep, and |q,a), is the Bloch state with
momentum g(€ [~z 7]> x [-27,2x]) and spin a. Note
that this thermal Fermi gas was used for detecting a static
topological phase [82—-84]. By tuning the lattice parameters
to be #;, 1, < t3, we can make the distribution f, ,(ks)
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TABLE 1. Tenfold-way topological classification of Floquet
operators for spatial dimension d = 0, 1, 2, 3. The Floquet single
Weyl fermion in Eq. (5) corresponds to class A in d = 3.

Class d=0 d=1 d=2 d=3
A 0 z 0 z
AIIl z 0 z 0
Al 0 0 0 27
BDI z 0 0 0
D Z, z 0 0
DIII Z, Z, z 0
Al 0 Z, Z, z
CII 27 0 z, z,
C 0 27 0 z,
CI 0 0 27 0

populated almost only on the lower Floquet bands, as
shown below.

In Fig. 2(c), we show the calculated pumped charge AQ
for a half-filling and zero-temperature initial state with
t; = t, = t3/3. The obtained value close to ¢/2 [green
dashed line in Fig. 2(c)] actually has a topological origin. In
the limit #;, #, < t3, only the lower Floquet bands are
occupied, i.e., frp(k) = 1, and hence

Trpp(ks) = Z|<k3’ k. blg.a)]> = 1. 9)
q.0

Then, AQ in Eq. (7) reduces to the sum of the one-
dimensional winding number divided by the number of
Landau levels N; = 2L; [L; is the number of sites along
the x, direction]. Since we have the (¢L,)-chiral bands due
to the flux ¢, each of which has the winding number +1, we
obtain AQ = ¢L,/N; = ¢p/2. We emphasize that this
quantized chiral current cannot arise in usual Floquet-
Weyl semimetals with topologically trivial U(k) because
left- and right-handed Weyl fermions appear with equal
numbers in accordance with the Nielsen-Ninomiya theo-
rem. The quasienergy band in our setup, in contrast, hosts a
single-chirality Weyl fermion without a partner of opposite
chirality within a single band, enabling us to realize the
maximally imbalanced population with only one chiral
component being occupied. Although the CME is a many-
body phenomenon originating from the chiral imbalance,
a similar effect can be observed in the single-particle
dynamics [45].

The chiral current in the Floquet CME is robust against
perturbations of the model due to the topological stability
of the single Weyl point protected by the 3D winding
number W. The blue points in Fig. 2(c) show the pumped
charge under a modified protocol with imperfect spin-
selective Thouless pumps, where Z/ljE G=1, 2, 3) is
replaced by U e~ (I = j+ 1 mod 3). Although U7 is
neither spin preserving nor spin selective due to the spin-
mixing term e~ AQ is almost unaffected. Furthermore,

we confirm that AQ persists even at finite temperature as
shown by the orange points in Fig. 2(c).

Classification of gapless Floquet states.—In static topo-
logical insulators, symmetries dramatically enrich the
classification of insulators as well as that of their gapless
surface states, which cannot be realized in bulk lattices
under the symmetry constraint [38]. This fact naturally
motivates us to topologically classify Floquet unitary
operators under various symmetries. As shown below,
the symmetry-protected Floquet unitaries offer a wide
range of lattice-prohibited band structures under sym-
metries that include the single Weyl fermion with the
topological Floquet unitary as an example.

Let us take a Floquet operator U(k) € U(N) given by
some unitary matrix. We here consider three symmetries in
the Altland-Zirnbauer classes [85,86]: time-reversal sym-
metry OH(k,t)®! = H(—k,T —t), particle-hole sym-
metry CH(k,t)C~' = —H(—k,t), and chiral symmetry
TH(k,t)T™! = —~H(k,T —t). In terms of the Floquet
operators, these symmetries are expressed as OU (k)@~! =
U'(-k), CUk)C'=U(-k), and TUK)I =
U'(k) [31]. We allow any continuous deformation of
Floquet operators which respect the symmetry of the
system, and classify their stable equivalence classes accord-
ing to the K theory [85,87]. Note that we do not assume
energy gaps of the quasienergy band. Then, the classifi-
cation of the unitary matrices can be performed in a manner
similar to the classification of “unitary loops” for Floquet
TIs/TSCs [88,89]. Since the derivation is parallel to
Refs. [88,89], we here outline the general idea and give
the full derivation in the Supplemental Material [45]. We
define a Hermitian matrix H;(k) by

0= (e W)

which satisfies Hy;(k)? = 1,y and thus has eigenvalues +1.
Note that in the case of the classification of Floquet
TIs/TSCs, the unitary matrix is taken as U(k,1) =
T exp[—i [jdi'H(k,1')] instead of U(k) [88]. Regarding
Hy(k) as a “Hamiltonian” and identifying its symmetry
class, we can show that the classification of U(k) is
equivalent to that of H (k) given by some K groups of
static TIs/TSCs. Using the K-group isomorphism between
different spatial dimensions [85,87], we find that the K
group of Floquet operators of a symmetry class in d
dimensions is given by that of static TIs/TSCs of the same
symmetry class in (d + 1) dimensions. Since the latter is
equivalent to the classification of d-dimensional gapless
surface states through the bulk-boundary correspondence,
we arrive at the conclusion that the classification of d-
dimensional gapless Floquet states is equivalent to that of
d-dimensional gapless surface states of TIs/TSCs. The final
result is summarized in Table I. This result strongly
suggests that the gapless surface states of TIs/TSCs, which

(10)

066403-4



PHYSICAL REVIEW LETTERS 123, 066403 (2019)

cannot have any pure lattice realization without bulk, can
be realized in bulk quasienergy spectra of periodically
driven lattice systems. In fact, a single Weyl fermion
presented in this Letter corresponds to a surface state of
a four-dimensional topological insulator [90] and to class A
in d =3 in Table 1. It merits further study to explicitly
construct examples of Floquet operators in other symmetry
classes.

Summary.—We have presented a periodically driven 3D
lattice system that exhibits a single Weyl fermion in a
quasienergy spectrum, thereby demonstrating a Floquet
version of the CME. Our proposal utilizes the topology of
the Floquet unitary. While the mathematical formula of the
3D winding number (6) was presented in a seminal work
[31], its physical consequence and concrete realization had
remained elusive. We have resolved this problem and
provided a generalization to a topological classification
of Floquet operators in the Altland-Zirnbauer symmetry
classes. We expect that the unique topological structure
arising from unitary operators will serve as a useful
guideline for designing nonequilibrium systems free from
the limitations of static phases of matter.
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