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We present a scheme for engineering quantum transport dynamics of spin excitations in a chain of laser-
dressed Rydberg atoms, mediated by synthetic spin exchange arising from diagonal van der Waals
interaction. The dynamic tunability and long-range interaction feature of our scheme allows for the
exploration of transport physics unattainable in conventional spin systems. As two concrete examples, we
first demonstrate a topological exciton pumping protocol that facilitates quantized entanglement transfer,
and second we discuss a highly nonlocal correlated transport phenomenon which persists even in the
presence of dephasing. Unlike previous schemes, our proposal requires neither resonant dipole-dipole
interaction nor off-diagonal van der Waals interaction. It can be readily implemented in existing
experimental systems.
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Developing controlled large-scale quantum systems
constitutes a central goal of quantum simulation and
quantum computation [1,2]. Among the variety of physical
realizations, neutral atoms present several unique advan-
tages [3], such as their inherent qubit identity, long
coherence time, flexible state maneuverability, as well as
tunable qubit-qubit interactions, for instance, mediated by
Rydberg states [4]. The continued progress in Rydberg-
atom studies offers great potential for probing many-body
dynamics [5–9]. With improved operation fidelity [10] and
increased system size [11], quantum simulation on the
Rydberg atom based platform [8,12] is becoming increas-
ingly attractive.
The transport of a particle or spin via quantum state-

changing interactions is essential for understanding energy
or information flow. Emulating such problems on a
quantum simulator constitutes a focused thrust within
the broad quantum physics community [13–17]. Earlier
efforts based on Rydberg-atom systems have provided first
insights [18–24], where transport of spin excitation is
facilitated typically by resonant dipole-dipole interaction
(DDI) or by off-diagonal van der Waals (vdW) flip-flop
interaction between Rydberg states. They include direct
spin-exchange between different Rydberg states [18–20],
second-order exchange between the ground state and the
Rydberg state [21–23], and a fourth-order process inside
ground internal state manifolds [24–26].
In this Letter, we propose a simpler yet as effective

method for engineering exciton transport dynamics in a
Rydberg-atom system. The use of resonant DDI or flip-flop
vdWinteraction is avoided. Instead, ourmain idea relies on a
perturbative spin-exchange process by off-resonantly dress-
ing the ground state to a Rydberg state. Capitalizing on the

diagonal vdW interaction-induced Rydberg level shift,
perturbations from different pathways collectively contrib-
ute to a net exchange interaction between the ground and the
Rydberg states. When exciton-exciton interaction as well as
dephasing are included, our model system is shown to be
capable of simulating various transport dynamics unattain-
able in conventional spin systems. In the first example, we
establish an interesting topological pumping protocol,
whereby the exciton experiences a quantized center-of-mass
motion. In the second example, we show that the long-range
interaction between excitons permits the formation of high-
order magnon bound state, which exhibits nonlocal corre-
lations even when ballistic transport turns into classical
diffusion due to dephasing.
Model.—The system we study is an array of individually

trapped cold atoms, dressed by laser fields that couple the
ground state jgi to a Rydberg state jri [7,10]. It is modeled
by the Hamiltonian

Ĥ ¼
X
i

Ωi

2
σ̂ix þ

X
i

Δiσ̂
i
rr þ

X
i<j

VðrijÞσ̂irrσ̂jrr; ð1Þ

where Ωi and Δi are Rabi frequencies and detunings of the
dressing field [Fig. 1(a)], σ̂ix ¼ jriihgij þ jgiihrij and σ̂iαα ¼
jαiihαij (α ¼ g, r) are spin-flip and projection operators for
the ith atom (located at ri), and VðrijÞ ¼ C6=jri − rjj6 is
the diagonal vdW interaction between atoms in the
Rydberg state [6] (we take C6 > 0).
First, we consider the dynamics of a single Rydberg

exciton. In the limit of large detuning with Ωi ≪ jΔij,
jΔi þ VðrijÞj, and jΔi − Δjj ≪ jΔi=jj, the singly excited
state set fjΨii ¼ jg1g2 � � � ri � � � gNi; i ¼ 1; 2;…; Ng forms
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a quasidegenerate subspaceΠ1. As a result, the perturbative
coupling with the rest of the Hilbert space can induce
strong state mixing inside Π1, giving rise to coherent
position exchanges of the exciton. To clarify the
basic physics, we take the example of N ¼ 2. As shown
in Fig. 1(b), the degenerate states jr1g2i and jg1r2i are off-
resonantly coupled to jg1g2i and jr1r2i, which can be
approximately treated as two Raman pathways. For the
noninteracting case (V ¼ 0), the contributions of these two
paths cancel out. In the presence of the vdW interaction, the
level shift V for jrri causes the two pathways collectively
to yield a nonvanishing spin exchange interaction J ¼ Ω2=
4Δ −Ω2=4ðΔþ VÞ. For a many-body system, applying
second-order Van Vleck perturbation theory [27] to the
original model [Eq. (1)] and dropping the constant
−
P

jΩ2
j=4Δj, we arrive at an effective Hamiltonian [28],

Ĥeff ¼
X
i

�
Δi þ

Ω2
i

2Δi

�
σ̂irr þ

X
i≠j

Iijσ̂irrσ̂
j
gg þ Jijσ̂iþσ̂j−; ð2Þ

where σ̂iþ ¼ jriihgij and σ̂i− ¼ jgiihrij are spin raising and
lowering operators for the ith atom. The Ising-type inter-
action Iij and the spin-exchange interaction Jij, respec-
tively, take the following forms

Iij ¼
Ω2

jVðrijÞ
4Δj½Δj þ VðrijÞ�

; Jij ¼
X
β¼i;j

ΩiΩjVðrijÞ
8Δβ½Δβ þ VðrijÞ�

:

In contrast to earlier dressing schemes [25,26], the spin-
exchange interaction we find constitutes a pure synthetic
interaction as the initial Hamiltonian Eq. (1) contains only
diagonal vdW interactions. It exhibits different r depend-
ence compared with previous schemes [Fig. 1(c)] and is
highly tunable in terms of Ωi and Δi. This effective model
is not restricted to any particular type of lattice, and this
work considers the simplest one-dimensional periodic
chain with a spacing d.
The exciton transport is conveniently described by

mapping spins to hard-core bosons with σ̂iþ ¼ â†i and
σ̂i− ¼ âi, where â†i (âi) creates (annihilates) a Rydberg
exciton at site i. The effective Hamiltonian for a single
exciton can then be expressed in a tight-binding form with
Ĥeff ¼

P
iμiâ

†
i âi þ

P
i<jJijðâ†i âj þ â†j âiÞ, where μi ¼

Δi þ Ω2
i =2Δi þ

P
j≠iIij is the on-site potential. To bench-

mark the effective model, we focus on an entanglement
distribution protocol, in which the entangled state ðjr0g1i þ
jg0r1iÞ=

ffiffiffi
2

p
is transferred to ðjr0gNi þ eiϕjg0rNiÞ=

ffiffiffi
2

p
over

a chain of N þ 1 atoms. For systems dominated by nearest-
neighbor (NN) hopping, perfect entanglement transfer can
be achieved when the conditions μi ¼ μ, Ji;iþ1 ¼
J

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iðN − iÞp

[29] are satisfied. The initial entangled state
can be set up via Rydberg blockade, and the perfect transfer
condition can be met by tuning local parameters Ωi and
Δi. As verified by numerical results (N ¼ 6) shown in
Fig. 1(d), entanglement between the two end nodes
gradually establishes and approaches the maximal value
eventually, calibrated by their concurrence [30] and state
fidelity. The potential existence of disorder in atomic
positions is also taken into account in the calculation
[7]. As long as the disorder-induced interaction fluctuation
δVij is much smaller than Vij itself (δVij ≪ Vij), the
transport efficiency remains high [28]. We note that all
numerical results presented in this work are based on
solving the exact model Eq. (1).
In addition to simulating coherent dynamics, the system

we consider also provides a platform for probing the
crossover between coherent and incoherent transport. In
the presence of dephasing [31,32], the evolution of the
density matrix ρ̂ is governed by the master equation ∂tρ̂ ¼
−i½Ĥ; ρ̂� þP

iL½ ffiffiffi
γ

p
σ̂irr�ρ̂, where the Lindblad operator L

gives L½σ̂�ρ̂ ¼ σ̂ ρ̂ σ̂† − 1
2
ðσ̂†σ̂ ρ̂þρ̂σ̂†σ̂Þ. For weak dephas-

ing (γ ≪ jΔij), the dynamics remain confined within the
subspace Π1 for times smaller than tc ¼ min fΔ2

i =γΩ2
i g,

while for t > tc incoherent spin flips and exciton growth
takes over [31]. In the transport regime (t < tc), the dy-
namics can be effectively described by ∂tρ̂ ¼ −i½Ĥeff ; ρ̂�þP

iL½ ffiffiffi
γ

p
â†i âi�ρ̂, equivalent to the Haken-Reineker-Strobl
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FIG. 1. (a) Level structure for the proposed atomic system. We
consider 87Rb atom with jgi ¼ j5S1=2; F ¼ 2; mF ¼ −2i, jri ¼
j70S; J ¼ 1=2; mJ ¼ −1=2i [10]. (b) Illustration of the mecha-
nism for generating a synthetic spin-exchange interaction.
(c) Synthetic exchange strength JðrÞ vs distance r for Ω=2π ¼
5 and Δ=2π ¼ �50 MHz. The dashed lines denote the facilita-
tion condition Δþ VðrÞ ¼ 0. (d) The left panel shows the
concurrence for the first two nodes [Cðρ̂01Þ] and the two end
nodes [Cðρ̂06Þ]. The right panel shows the fidelity to the target
state ðjr0g1 � � � g6i − ijg0g1 � � � r6iÞ=

ffiffiffi
2

p
(upper figure, the rigor-

ous and effective results are obtained with Ĥ and Ĥeff , respec-
tively) and values of dressing parameters (lower figure) with
VðdÞ ¼ 3Δ (Δ > 0) and d ¼ 4.4 μm. The numerical data re-
present averages over 500 calculations, assuming a Gaussian
distribution of atomic position along the chain direction with
0.1 μm standard deviation. The error bars mark 1 standard
deviation intervals.
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(HRS) model with coherent hopping and on-site dephasing
[33–35]. The exciton motion remains coherent for t < 1=γ,
and exhibits incoherent features as it enters the diffusion
region t > 1=γ [28].
Next we discuss the case involving multi-excitons. With

n Rydberg excitons, the quasidegenerate perturbation
analysis can no longer be simply applied to the subspace
Πn spanned by the states fjΨi1;…;ini ¼ jg1 � � � ri1 � � �
rin � � � gNi; i1 < � � � < ing, since the large vdW interaction
between excitons removes some of the degeneracy. For
example, in the n ¼ 2 case, the doubly excited subspaceΠ2

can be decomposed into Π2 ¼ Π0
2⋃Π00

2 , with Π0
2 spanned

by the dimer states fjΨi;iþ1i ¼ jg1 � � � ririþ1 � � � gNi; i ¼
1;…; Ng and Π00

2 the complementary set of Π0
2. If

Vðri;iþ1Þ is of the same order as jΔij, Π0
2 and Π00

2 forms
two decoupled quasidegenerate subspaces. Inside Π0

2, the
dimer states are coupled to each other through next-nearest-

neighbor (NNN) hoppings
P

iJ
ð2Þ
i σ̂iþσ̂iþ1

rr σ̂iþ2
− þ H:c:, with

an effective three-body exchange interaction

Jð2Þi ≈
ΩiΩiþ2Vðri;iþ2Þ

4½Δi þ Vðri;iþ1Þ�½Δi þ Vðri;iþ1Þ þ Vðri;iþ2Þ�
:

For exciton dynamics inside Π00
2 , the perturbation analysis

yields an effective Hamiltonian Ĥ0
eff ¼ Ĥeff þ Ĥint [28],

where Ĥeff is the single-exciton effective Hamiltonian,
while Ĥint ¼

P
i<jUijâ

†
i â

†
j âjâi describes exciton-exciton

interactions, with strength Uij ¼ VðrijÞ − 2ðIij þ IjiÞ. For
the case of n excitons, the dynamics of the system can still
be approximately described by Ĥ0

eff, as long as the initial
separations between excitons are large enough to ensure
that their mutual interactions are much smaller than the
detuning. If some of the excitons are close to each other
initially, they will form a tightly bound state (such as the
dimer state described above), whose transport property
needs further elaborations.
When simulating transport physics, we focus on the case

where the total exciton number N̂e ¼
P

iσ̂
i
rr ¼

P
iâ

†
i âi is

conserved. However, N̂e is not strictly conserved due to a
finite spin-flip probability jΩi=Δij2 for each (ith) atom.
This could significantly influence the quality of our
simulations especially as the number of atoms increases.
However, for observables whose expectation values only
depend on the diagonal elements of ρ̂ (e.g., density
correlations), the simulation results can be refined via
postselection based on projective measurements. If the
dynamics of n excitons are of interest, the expectation
values of the observables are calculated by the refined
density matrix ρ̂p ¼ p−1P

kpkP̂k, where P̂k ¼ jϕkihϕkj
denotes the projection operator of state jϕki∈Πn, and pk ¼
Trðρ̂P̂kÞ is the probability of the measurement. The post-
selection probability p ¼ P

kpk scales as 1 − NΩ2=2Δ2,

which is acceptable for a reasonable sized system (p ≈ 0.75
for Δ=Ω ¼ 10 and N ¼ 50).
Example 1.—To illustrate the dynamical tunability of our

scheme, we consider an implementation for topological
exciton pumping, for which a time-dependent and site-
dependent exchange interaction is required [36–41]. A
periodic system with broken parity symmetry is assumed
[42], with three lattice sites (labeled as A, B, C, and
separated by d) forming a unit cell (with the period l ¼ 3d),
dressed by control fields of three intensities [Fig. 2(a)]
with corresponding Rabi frequencies ΩA;ΩB;ΩC ¼ Ω×
fsin2ðϕþ π=4Þ; sin2ðϕÞ; sin2ðϕ − π=4Þg and ϕ a time-
dependent control parameter. Such a dressing scheme
can be realized by using three independently controlled
acousto-optic deflectors. Retaining the NN interaction, the
system can be described by the generalized Rice-Mele
Hamiltonian [43]

Ĥeff ¼
X
i

ðJAâ†i b̂i þ JBb̂
†
i ĉi þ JCĉ

†
i âiþ1 þ H:c:Þ

þ
X
i

ðμAâ†i âi þ μBb̂
†
i b̂i þ μCĉ

†
i ĉiÞ; ð3Þ

where âi, b̂i, and ĉi are exciton annihilation operators for
site A, B, and C of the ith unit, respectively. According to
the Bloch theorem, this system can be described in the
quasimomentum k space with a single-particle Hamiltonian
Ĥðk;ϕÞ [28], which is also periodic in ϕ. Thus, we can
define the energy band in the synthetic space k ¼ ðk;ϕÞ
with the first Brillouin zone (BZ) k ∈ ð−π=l; π=l� and
ϕ ∈ ð−π=2; π=2�. The topology of each band is charac-
terized by the Chern number

(a)

(b)

(c)

(d)

FIG. 2. (a) Illustration of the dressing scheme for topological
exciton pumping. (b) Energy band and Berry curvature of the
effective model. (c) Illustration of the pumping sequence.
(d) Mean displacement hxi of the exciton at different time t.
The blue dots are calculated by the refined density matrix using
the exact model Eq. (1), and the red lines are obtained with
the effective Hamiltonian Eq. (3). The inset shows the modula-
tion detail ϕ=π ¼ 1

2
þ fðtanh½5.6(t=T − 1=2)�Þ=2 tanhð2.8Þg.

The simulations are performed with Ω=2π ¼ 5 MHz, Δ=2π¼
20MHz, VðdÞ ¼ 3Δ, N ¼ 12, and T ¼ 27.7 μs.
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Cn ¼
1

2π

Z
BZ

BnðkÞd2k; ð4Þ

where BnðkÞ ¼ iðh∂ϕunj∂kuni − c:c:Þ is the Berry curva-
ture of the nth band, and juni is the eigenstate of Ĥðk;ϕÞ.
For the system considered above, we find three gapped
bands with respective nontrivial topological numbers
C1; C2; C3 ¼ f1;−2; 1g, as shown in Fig. 2(b).
In this case, we can implement Thouless pumping [36],

while the parameter ϕðtÞ is slowly modulated in time t.
After a pumping cycle in which ϕ changes by π, the
Hamiltonian returns to its initial form. If an energy band is
filled or homogeneously populated, the mean displacement
hxi of the exciton after one pumping cycle is quantized in
units of lattice constant, i.e., hxi=l ¼ Cn. For our system,
the energy gap Ω2VðdÞ=8Δ½Δþ VðdÞ� between the upper
and the middle band is about 2 orders of magnitude larger
than the gap between the middle and the lower band. Thus,
to achieve better adiabaticity, we consider motion of the
exciton within the upper band. As indicated by the pumping
sequence shown in Fig. 2(c), we first shine a resonant field
on sites Cj and Ajþ1 to produce an entangled state jψ ji ¼
ð1= ffiffiffi

2
p Þðĉ†j þ â†jþ1Þj0i using Rydberg blockade. With such

an initialization and ϕð0Þ ¼ 0, we create an equally
weighted Bloch state for the upper band. Then, we
adiabatically ramp ϕ from 0 to π, and observe the position
of the exciton. As shown in Fig. 2(d), the mean displace-
ment of the exciton after one pumping cycle is indeed
hxi ≈ 3d ¼ l, in agreement with the topology of the upper
band. Since this energy band is almost flat in the k
dimension, such a quantized motion indicates a high-
efficiency entangled state transfer from jψ ji to jψ jþ1i. It
is worth pointing out that during the long pumping cycle T,
the NNN interaction also comes into play. In fact, the long-
range interaction induced NNN hoppings

P
iðJ0Aâ†i ĉiþ

J0Bb̂
†
i âiþ1 þ J0Cĉ

†
i b̂iþ1 þ H:c:Þ and the modifications to

on-site potential can be viewed as perturbations to Ĥeff .
We find that although these perturbations can significantly
modify the spread hx2i of the exciton, they do not change
the mean displacement hxi [28]. Such a robust center-of-
mass (c.m.) motion is protected by the topology of the
band, which is invariant under continuous deformation of
the Hamiltonian [44,45].
Example 2.—The strong and nonlocal exciton-exciton

interaction in the proposed system also makes it feasible for
studying correlated transport [46,47]. Here, we consider the
dynamics of two excitons in a homogeneously dressed
(Δi ¼ Δ and Ωi ¼ Ω) chain with Vð2dÞ ≪ jΔj.
We first consider the dynamics of the dimer state

jΨi;iþ1i, which can be prepared via antiblockade excitation
satisfying 2Δþ VðdÞ ¼ 0 [48]. As explained previously,
such a tightly bound state can migrate through NNN
hopping [see the upper panel of Fig. 3(a)], the hopping
rate of which can be significant near the facilitation [7]

region Δþ VðdÞ ¼ 0. This correlated transport can be

measured by the second-order correlation function gð2Þi;j ¼
hâ†i â†j âjâii. As shown in Fig. 3(a), we find gð2Þi;j rapidly
spreads on the diagonals j ¼ i� 1 while it remains
localized on the orthogonal directions, which confirms
the existence of such a mobile bound state.
For excitons separated by more than one site, the state

evolution is governed by Ĥ0
eff. Unlike spin systems reported

earlier [23,46], the long-range interaction Uij can be tuned
much larger than the exchange rate Jij here, which results
in a highly anisotropic XXZ model and permits the
existence of high-order bound states. If the NNN inter-
action Ui;iþ2 is sufficiently larger than the NN hopping rate
Ji;iþ1, excitons separated by one lattice site also form bound
states and exhibit correlated motion. Different from the
dimer state jΨi;iþ1i, transport of the high-order bound state
jΨi;iþ2i relies on a second-order process with hopping rate
∼J2i;iþ1=Ui;iþ2 [see the upper panel of Fig. 3(b)]. As

verified by numerical results shown in Fig. 3(b), gð2Þi;j

also localizes on the skew diagonals, but spreads on the
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FIG. 3. (a) Evolution of the density-density correlation gð2Þi;j for
the dimer state jΨi;iþ1i. (b) Evolution of the density-density
correlation for the high-order bound state jΨi;iþ2i. (c) Correlation
function at 9 μs, with the same initial state in (b) and
γ ¼ 0.2 MHz. (d) Normalized probability distribution of the
c.m. position. The blue bars are numerical results obtained from
the exact model with projective measurement, and the red dotted
lines are fitted curves using a Bessel function of the first kind
(upper) and a Gaussian function (lower), respectively. The
parameters used are Ω=2π ¼ 5 MHz, Δ=2π ¼ −400 MHz,
VðdÞ ¼ −1.1Δ, N ¼ 12 in (a), and Δ=2π ¼ 30 MHz,
VðdÞ ¼ 3Δ, N ¼ 13 in (b)–(d). The correlation functions are
normalized to the maximal value.
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j ¼ i� 2 diagonals in this case. The influence of dephas-
ing on this highly nonlocal correlated behavior is also
investigated. In Fig. 3(c), we calculate the correlation
function for t > 1=γ, with γ the dephasing rate introduced

previously. Interestingly, the strong bunching of gð2Þi;j along
i ¼ j� 2 survives, although its distribution is different
from the coherent case. The small and uniform distribution

of gð2Þi;j for ji − jj > 2 indicates the diffusion equilibrium for
unpaired free excitons has been established, while the
strong NN interaction Ui;iþ1 forbids the diffusion into ji −
jj ¼ 1 region. To gain a deeper insight into such a
correlated transport, we investigate the c.m. motion of
two excitons. For coherent transport, this motion is char-
acterized by a quantum random walk [49], with a density
distribution described by the Bessel function [see the upper
panel of Fig. 3(d)]. In contrast, the c.m. density distribution
at t > 1=γ is well fitted by a Gaussian function [see the
lower panel of Fig. 3(d)]. This indicates that the high-order
bound state we study exhibits diffusive expansion as a
composite, which does not reach equilibrium due to its
reduced diffusion rate compared to free excitons.
In conclusion, we propose a Rydberg-atom system for

studying quantum transport dynamics, utilizing synthetic
spin-exchange induced by vdW interaction. Our scheme
does not require resonant DDI or off-diagonal vdW
interaction, and thus avoids the complicated excitation
schemes in multi-Rydberg-level systems. For the state-
of-the-art experimental setup, its typical Rydberg lifetime
∼50 μs [10] will not hinder the exciton transport we
discuss, and its influence on the dynamics can be elimi-
nated by using projective measurement [28]. In addition to
simulating quantum transport phenomena, this work opens
up an avenue towards constructing exotic spin models with
Rydberg atoms, which, for instance, can facilitate the study
of many-body localization [50,51].
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