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We present an operator-based factorization formula for the transverse energy-energy correlator (TEEC)
hadron collider event shape in the back-to-back (dijet) limit. This factorization formula exhibits a
remarkably symmetric form, being a projection onto a scattering plane of a more standard transverse
momentum dependent factorization. Soft radiation is incorporated through a dijet soft function, which can
be elegantly obtained to next-to-next-to-leading order (NNLO) due to the symmetries of the problem. We
present numerical results for the TEEC resummed to next-to-next-to-leading logarithm (NNLL) matched to
fixed order at the LHC. Our results constitute the first NNLL resummation for a dijet event shape
observable at a hadron collider, and the first analytic result for a hadron collider dijet soft function at
NNLO. We anticipate that the theoretical simplicity of the TEEC observable will make it indispensable for
precision studies of QCD at the LHC, and as a playground for theoretical studies of factorization and its
violation.
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Introduction.—Event shape observables, which measure
the flow of radiation in a scattering event, play a central role
in QCD. They allow for precision measurements of QCD
parameters, such as the strong coupling constant, αs, as
well as for probes of more subtle features of QCD, such as
color evolution or factorization violation. While event
shape observables in eþe− collisions are by now quite
well understood, with calculations incorporating next-to-
next-to leading order (NNLO) fixed order corrections
[1–4], and next-to-next-to-next-to leading logarithmic
(N3LL) resummation [5–8], the same level of understand-
ing has not been achieved for event shape observables at
hadron colliders. This is due both to the technical complex-
ity of fixed order calculations with multiple legs, and to the
failure of standard factorization formulas in the hadron
collider context. The theoretical and experimental study of
event shape observables at hadron colliders therefore
provides genuinely new opportunities for improving our
understanding of QCD.
An important aspect in the description of event shapes is

the resummation of singular terms in kinematic limits. For
hadron collider event shapes, NNLL resummation has been
achieved for zero-jet [9–11] and one-jet event shapes [12].

However, many interesting effects, namely nontrivial color
evolution and amplitude level factorization violation, first
occur for dijet event shapes, for which complete results are
only available at NLL [13–18].
A number of recent developments, namely the calcu-

lation of the three loop soft anomalous dimension [19,20],
progress towards three jet production at NNLO [21–30],
the illustration of the noncancellation of Glauber effects in
dijet processes [31–33], the elucidation of amplitude-level
factorization violation [34–36], and a formalism for the
incorporation of factorization violation in the soft collinear
effective theory (SCET) [37], motivate a renewed interest in
the theoretical study of dijet event shapes.
In this Letter, we will study the transverse energy-

energy-correlator (TEEC) observable [38,39],

dσ
dcosϕ

¼
X
a;b

Z
dσpp→aþbþX

2ET;aET;b

jPiET;ij2
δðcosϕab− cosϕÞ;

ð1Þ

where the sum is over all pairs of hadrons, ET is the
transverse energy of the hadrons, and ϕab the azimuthal
angle between the hadrons, as illustrated in Fig. 1. We note
that due to the energy weighting in the definition of the
observable, Eq. (1) is not truly a differential cross section.
However, we follow the standard abuse of notation and
denote it as such. For recent measurements of the TEEC
for jets, see Refs. [40,41]. Building on significant recent

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW LETTERS 123, 062001 (2019)

0031-9007=19=123(6)=062001(7) 062001-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.123.062001&domain=pdf&date_stamp=2019-08-09
https://doi.org/10.1103/PhysRevLett.123.062001
https://doi.org/10.1103/PhysRevLett.123.062001
https://doi.org/10.1103/PhysRevLett.123.062001
https://doi.org/10.1103/PhysRevLett.123.062001
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


progress in the understanding of the energy-energy cor-
elator (EEC) observable [42–48], we will show that the
TEEC exhibits a remarkable perturbative simplicity in the
dijet limit, allowing for significant progress to be made in
the understanding of hadron collider event shapes.
Factorization formula.—One of the main results of this

Letter is an operator based factorization formula, derived in
SCET [49–52], describing the singular behavior of the
TEEC observable in the ϕ → π, or more conveniently, the
τ≡ sin2½ðπ − ϕÞ=2� → 0 limit. In this limit, the singular
behavior of the observable is described by a dijet configu-
ration, with collinear radiation along the beam and jet axes,
as well as low energy soft radiation. The τ → 0 limit defines
a scattering plane spanned by the beam axis and the axis of

the outgoing jets (more precisely the transverse thrust axis).
Collinear splittings and soft emissions recoil the particles
correlated by the TEEC observable slightly from this plane,
see Fig. 1. This singular region is similar to those
considered for studying azimuthal correlations in DIS
[53] or back-to-back jets in eþe− [54].
The simplicity of the TEEC lies in a relation between the

azimuthal angle ϕ and the momentum perpendicular to the
scattering plane, which we will denote as the y component,
as illustrated in Fig. 1. Consider two final state particles k3
and k4, whose transverse energy correlation is to be
measured. In addition to the transverse momentum off
the scattering plane due to final-state collinear splittings,
they obtain transverse momentum from the recoil of the
total soft momentum ks;y, and from the momenta k1;y and
k2;y of the incoming particles which enter the hard
scattering. In the τ → 0 limit, we have the relation

τ ¼
ðk3;yξ3

þ k4;y
ξ4

þ k1;y þ k2;y − ks;yÞ2
4P2

T
þ;…; ð2Þ

where ξ3 and ξ4 are the respective longitudinal momentum
fractions of the two measured final state particles relative to
the two leading jet momentum p3 and p4, and PT is the
transverse momentum of p3 and p4 relative to the
beam axis.
The relationship in Eq. (2) allows us to derive a

factorization formula for the TEEC in the dijet limit in
terms of standard transverse momentum dependent (TMD)
beam and jet functions

dσð0Þ

dτ
¼ 1

16πs2ð1þ δf3f4Þ
ffiffiffi
τ

p
X

channels

1

Ninit

Z
dy3dy4pTdp2

T

ξ1ξ2

Z
∞

−∞

db
2π

e−2ib
ffiffi
τ

p
pT tr½Hf1f2→f3f4ðpT; y�; μÞSðb; y�; μ; νÞ�

· Bf1=N1
ðb; ξ1; μ; νÞBf2=N2

ðb; ξ2; μ; νÞJf3ðb; μ; νÞJf4ðb; μ; νÞ: ð3Þ

Here the superscript (0) indicates that this formula
describes all contributions to the cross section that scale
like 1=τ modulo logarithms, up to potentially factorization
violating terms which occur first at N4LO, and will be
discussed shortly. This factorization formula is a sum over
different 2 → 2 partonic scattering channels f1ðp1Þ
f2ðp2Þ → f3ðp3Þf4ðp4Þ, where Ninit is the corresponding
spin- and color-averaged factor for each channel,

ffiffiffi
s

p
is the

center-of-mass energy, y3, y4, and pT are the rapidity and
transverse momentum of the two leading partonic jets at the
lowest order in perturbation theory, and ξ1 ¼ pTðey3 þ
ey4Þ= ffiffiffi

s
p

and ξ2 ¼ pTðe−y3 þ e−y4Þ= ffiffiffi
s

p
are the born-level

initial-state momentum fractions. The dependence on the
scattering channel is incorporated through the hard function
Hf1f2→f3f4ðpT; y�; μÞ, which depends on the pT and the
single jet rapidity y� ¼ ðy3 − y4Þ=2 in the partonic center-
of-mass frame. Each of the functions in Eq. (3) depends on

a virtuality renormalization scale μ, and a rapidity renorm-
alization scale ν [55,56]. The associated renormalization
group (RG) equations allow for the resummation of
logarithms of τ.
The soft and collinear dynamics in the dijet limit are

described by beam functions, B, jet functions, J, and a soft
function, S. The beam functions and jet functions in Eq. (3)
are identical to the well-known TMD beam functions and
EEC jet functions [47] (which are in turn related to the
TMD fragmentation functions [57–59]). Therefore, the
TEEC in the dijet limit provides a probe into both beam
and jet TMD dynamics that is interesting to a broad
community. Since the TMD beam and jet functions are
standard objects, we do not discuss them further, but collect
all the anomalous dimensions and matching coefficients in
the Supplemental Material [60]. The TEEC soft function is
new and will be discussed shortly.

FIG. 1. The TEEC measures the ET weighted angular corre-
lation of pairs of particles as a function of the angle ϕ in the
transverse plane. In the ϕ → π limit, it measures the momentum
in the direction ŷ perpendicular to the scattering plane spanned by
the beam and jet axes, outlined in dashed blue.
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The factorization formula in Eq. (3) is expected to be
violated at N4LO by Glauber gluons [88] which couple the
different beam and jet functions. While the cancellation of
Glauber gluons was shown for color singlet transverse
moment distributions in the seminal works of Refs. [54,88–
93], it is expected that factorization should not hold for a
dijet event shape [31,32,34–37,94–104]. Glauber contri-
butions can potentially be incorporated in our formalism
using Ref. [37], and indeed one of our primary motivations
is to understand such violations by identifying a dijet
observable with the simplest perturbative structure. Apart
from a brief comment on the anomalous dimension of the
soft function at N3LO, we leave the study of violations of
this factorization formula to future work, and restrict
ourselves to NNLL accuracy where Eq. (3) holds.
Soft function.—The most complicated obstacle for pre-

cision calculations of multijet event shapes is the soft
function, due to its dependence on multiple directions. (For
recent progress towards numerical calculations of soft
functions at NNLO, see Refs. [105–107].) A key feature
of the TEEC which makes it particularly amenable to
analytic higher order calculations is the simplicity of its soft
function, which is defined as a vacuum expectation of
Wilson lines,

Sðb; y�Þ ¼ h0jT½On1n2n3n4ð0μÞ�T̄½O†
n1n2n3n4ðbμÞ�j0i; ð4Þ

as illustrated in Fig. 2 (There the temporal direction has
necessarily been suppressed). Here On1n2n3n4ðxÞ ¼
Yn1Yn2Yn3Yn4ðxÞ, with YniðxÞ ¼ exp½i R dsni · Aðsni þ
xÞTi� a semi-infinite lightlike soft Wilson line, and nμi ¼
pμ
i =p

0
i the lightlike direction of the incoming or outgoing

parton in the partonic center-of-mass frame. The directions
of the Wilson lines are standard and hence suppressed,
as are gauge links at infinity. We have chosen coordinates
such that bμ ¼ ð0; 0; b; 0Þ is in the direction ŷ perpendicular
to the scattering plane, ŷ · ni ¼ 0.
The soft function defined in Eq. (4) suffers from UVand

rapidity divergences. Rapidity divergences are regulated

using the exponential regulator of [108]. The soft function,
which is a matrix in color space, satisfies the RG equation

dS
d ln μ2

¼ 1

2
ðΓ†

S · Sþ S · ΓSÞ; ð5Þ

with [13,14,109,110]

ΓS ¼
X
i<j

Ti · Tjγcusp ln
ν2ni · nj
2μ2

−
X
i

ci
2
γs1 − γquad; ð6Þ

where ν is the rapidity scale, and ci ¼ CF or CA is the
Casimir of the parton i. Here γcusp is the cusp anomalous
dimension [111], γs is the threshold soft anomalous
dimension [112] and γquad is the anomalous dimension
for quadrupole color and kinematic entanglement, which
first appears at three loops [19,20]. The evolution equation
associated with the rapidity scale ν is

dS
d ln ν2

¼ 1

2
ðΓ†

y · Sþ S · ΓyÞ; ð7Þ

with

Γy ¼
�Z

b2
0
=b2

μ2

dμ̄2

μ̄2
γcusp½αsðμ̄Þ� þ γr½αsðb0=bÞ�

�

×
X
i

ci1þ γX½y�; αsðb0=bÞ�: ð8Þ

This is the generalization of the rapidity RGE [55,56] for
color singlet production to dijet production at hadron
colliders. Here γr is the rapidity anomalous dimension
for the color transverse momentum distribution [113], and
b0 ¼ 2e−γE .
The color nondiagonal rapidity anomalous dimension,

γX, vanishes at one and two loops due to rescaling
invariance, ni → eλini, which is sufficient for the NNLL
resummation considered in this Letter. γX can potentially be
nonzero at three loops where there is a scaling invariant
cross ratio n1 · n3n2 · n4=ðn1 · n2n3 · n4Þ ¼ ð1− tanhy�Þ2=4.
The consistency of the factorization formula (derived from
rapidity scale independence of the cross section) implies
γX ¼ 0 to all perturbative orders; however, since the
factorization formula is expected to be violated, we do
not take this as given. If γX ¼ 0, it requires a symmetry
explanation, and if not, it provides a direct window into
factorization violation. Either way, we believe that the
calculation of the TEEC soft function at three loops will
provide considerable insight into rapidity factorization.
While the RG can be used to predict the logarithmic

dependence of the soft function, its simple structure implies
that the constants can also be easily computed. Writing its
perturbativeexpansionasS ¼ Pðαs=4πÞnSðnÞ, fromadirect
perturbative calculation, we find the beautiful relation

FIG. 2. The spatial structure of the TEEC soft function. Each
set of Wilson lines lies in a scattering plane, and their relative
displacement is perpendicular to these planes.
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Sð1Þðy�; Lb; LνÞ ¼ −
X
i<j

ðTi · TjÞSð1Þ⊥
�
Lb; Lν þ ln

ni · nj
2

�
;

Sð2Þðy�; Lb; LνÞ ¼ −
X
i<j

ðTi · TjÞSð2Þ⊥
�
Lb; Lν þ ln

ni · nj
2

�
;

þ 1

2!
½Sð1Þðy�; Lb; LνÞ�2; ð9Þ

whereSðnÞ⊥ ðLb; LνÞ is then-loopTMDsoft function for color-
singlet productionat hadroncolliders (whichcanbe foundup
to three loops in Ref. [113]), and Lb ¼ lnðμ2b2=b20Þ,
Lν ¼ lnðν2b2=b20Þ. Details of this calculation will be pre-
sented in a future publication. Equation (9) is the first
analytic result for a hadron collider dijet soft function at
NNLO (The 2-jettiness soft function was computed numeri-
cally in Ref. [107]). The remarkable simplicity of the TEEC
soft function should be compared with the soft functions for
the N-jettiness observable [107,114–117], which already at
one-loop, can only be computed numerically. We have also
not included in Eq. (9) a purely imaginary component that
does not contribute to the cross section, but is given in the
SupplementalMaterial [60]. The reason for this simplicity is
interesting, and deserves further comment. A soft function
describes the expected value of radiation sourced by a
configuration of Wilson lines, projected onto some direc-
tion(s). For theN-jettiness observable [118], these directions
are theWilson line directions themselves,which necessitates
a partitioning of the phase space around theWilson lines and
leads to a complicated structure. For a dijet configuration,
there is a unique direction perpendicular to the scattering
plane defined by the four Wilson lines, which we have
denoted ŷ, such that ŷ · ni ¼ 0 for all Wilson line directions
ni. This is the direction that is used to define the TEEC soft
function, as shown in Fig. 2, and leads to its simplicity. In
particular, it implies that the scale independent part of the
TEEC soft function can only be function of scaling invariant
cross ratio of ni. This points to the TEEC soft function as the
uniquely simple dijet soft function, and we believe this
simplicity will facilitate further analytic studies.
Numerical results.—We can use our factorization for-

mula in Eq. (3) to present numerical results for the LHC atffiffiffi
s

p ¼ 13 TeV. We use the anti-kT algorithm [119] with
cone size R ¼ 0.4 to select events with two leading jets
having averaged jet PT ≥ 250 GeV and individual jet
rapidity jYj < 2.5. The TEEC is computed for particles
with rapidity jyj < 2.5. Throughout, we will use the
PDF4LHC15_NNLO_MC [120] parton distribution functions,
and we take αsðMZÞ ¼ 0.118. An interesting feature of the
TEEC is that due to the energy weighting, the rapidity cuts
do not introduce so called nonglobal logarithms [121,122].
We begin by verifying that our factorization formula

correctly reproduces the singular behavior as τ → 0 by
comparing to the numerical code NLOJET++ [123,124],
which provides the LO and NLO QCD corrections to

three-jet production. We note that NLO QCD corrections to
the TEEC for jets have been computed in Ref. [125] using
NLOJET++, but here we are considering the TEEC for
particles. Since the TEEC is first nonvanishing with a
single emission from the dijet configuration, we use the
perturbative counting for three-jet production for the
matching. In Fig. 3 we show our factorization formula
expanded to fixed order, compared with the numerical
results of NLOJET++ for τdσ=dτ, finding perfect agreement.
This is highly nontrivial, as both calculations are rather
involved, with nine different partonic channels at LO, and
provides a strong check on the validity of our factorization
formula. To the best of our knowledge, this is the first time
that the singular behavior for a dijet differential distribution
is under full control at this order.
In Fig. 4, we plot the full NLO prediction for jdσ=dϕj in

the dijet limit, as well as its decomposition into the singular
terms predicted by the factorization, and the nonsingular
terms (power corrections) defined as the difference between
the full fixed order calculation and the singular result.
For ϕ → 180° the singular terms approach the full NLO
predictions, as already demonstrated in Fig. 3, but here we
can more clearly see the interplay between the singular and
nonsingular terms. Since the TEEC effectively measures
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FIG. 3. The TEEC at LO and NLO in the dijet limit. Here
δNLO denotes only the NLO corrections.
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the y component of an auxiliary transverse momentum
jqyj ∼ ðπ − ϕÞ, this suggests that the power corrections start
at Oðπ − ϕÞ. It would be interesting to understand them
further. Recent progress in the calculation of power
corrections for transverse momentum type observables
was made in Ref. [126].
In Fig. 5 we show resummed predictions for the TEEC at

NLL and NNLL, matched to LO and NLO, respectively.
Uncertainty bands are obtained by varying both the virtual-
ity and rapidity scales up and down by a factor of two, see,
e.g., Ref. [127]. As can be seen fromFig. 5, the resummation
cures the divergences in the fixed order calculations as
ϕ → 180°, and it would be particularly interesting to have
precise experimental measurements in this region. Also
clear is the reduction of scale uncertainties from NLLþ LO
to NNLLþ NLO, although we find that the perturbative
corrections are large. We leave a detailed analysis of various
uncertainties coming from scale variation, matching, and
nonperturbative corrections to future work.
Conclusions.—In this Letter we have initiated the study

of the TEEC hadron collider event shape. We have derived
a factorization formula describing its singular behavior in
the back-to-back (dijet) limit, and presented the first results
for a dijet event shape at NNLL matched to NLO. The
simplicity of the TEEC resides in its soft function, which
we showed can be expressed in terms of a color singlet soft
function through to NNLO.
There are a number of directions for further study and

improvement. First, it will be interesting to compute the
three-loop soft function for the TEEC to understand if γX is
nonvanishing, and to understand the role of factorization
violating terms at N3LL. This will then enable matching to
NNLO three-jet production once these become available
[22–30]. The resummation of collinear logarithms at ϕ → 0
can be performed systematically using an extension of the
jet calculus [128], and will be described in a forthcoming
work. Finally, it would be interesting to compute the TEEC
at strong coupling in planar N ¼ 4 super Yang-Mills
following Ref. [42], which could perhaps have relevance
for heavy ion collisions. We believe the simplicity of the

TEEC observable provides a laboratory for precision
studies of QCD at the LHC, and for studying the structure
of factorization and factorization violation for hadron
collider event shapes.
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