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Using lattice simulations we demonstrate from first principles the existence of a nonperturbative
mechanism for elementary particle mass generation in models with gauge fields, fermions, and scalars, if an
exact invariance forbids power divergent fermion masses and fermionic chiral symmetries broken at UV
scale are maximally restored. We show that in the Nambu-Goldstone phase a fermion mass term, unrelated
to the Yukawa operator, is dynamically generated. In models with electroweak interactions weak boson
masses are also generated, opening new scenarios for beyond the standard model physics.
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Introduction.—In spite of its impressive phenomeno-
logical success, the standard model (SM) of particle
physics is believed to represent only an effective low
energy theory, as it neither accounts for dark matter and
quantum aspects of gravity nor provides enough CP
violation for baryogenesis. Fermion and electroweak
(EW) boson masses are described in terms of a well-
established symmetry breaking pattern [1], but the SM is by
construction unable to shed light on the problems of EW
scale naturalness [2] and fermion mass hierarchy [3].
There have been numerous attempts to build phenom-

enologically viable models where the EW scale is stable
under quantum corrections, either because the basic theory
enjoys an approximate symmetry larger than in the SM or
because EW and Higgs mass scales are related in a fixed
way to a fundamental dynamical scale. Examples of the
first kind are the many models based on supersymmetry
(SUSY) [4,5] which, besides having the problem of
explaining SUSY breaking, are presently disfavored owing
to the experimental exclusion of SUSY particles with mass
up to a few TeV [6]. Approaches of the second kind assume
the existence of some new interaction that gets strong
around or above the EW scale, and of new fermionic
particles. The original technicolor idea [7,8] could account
for the EW boson masses, but attempts to understand
heavy fermion masses in extended technicolor (ETC)

models [9,10] face severe problems to comply with
experimental constraints on flavor changing neutral cur-
rents, even in subsequently developed walking ETCmodels
[11–14]. Other ways to comply with experimental con-
straints and possibly address the flavor hierarchy problem
are represented by the partially composite Higgs models
[15,16] and by models with extra dimensions [17–19].
At variance with previous attempts, a novel intrinsically

nonperturbative (NP) mechanism for elementary fermion
mass generation was conjectured in Ref. [20]. This
mechanism is expected to be at work in non-Abelian gauge
models where (as usual) (i) chiral transformations acting on
fermions and scalars are exact symmetries, but (deviating
from common assumptions) (ii) purely fermionic chiral
symmetries undergo an explicit breaking at the UV scale.
When bare parameters are “naturally” tuned so as to
minimize fermion chiral breaking, in the effective
Lagrangian (EL—generating functional of proper vertices)
no Yukawa term occurs, but operators of NP origin that
violate fermion chiral symmetries, among which a fermion
mass term, should appear, if the scalar potential is such that
the theory lives in its Nambu-Goldstone (NG) phase. Upon
introducing EW interactions, the same mechanism also
yields massive W�, Z0 bosons and a composite Higgs
boson in the WþW−=Z0Z0 channel [21].
In this Letter we employ lattice simulations (lacking

analytical methods) to provide evidence from first princi-
ples for the occurrence of the NP mass generation mecha-
nism of Ref. [20], within the simplest d ¼ 4model where it
could take place.
Mass generation in a toy model.—The Lagrangian of

the “toy” (yet nontrivial) model of interest here [20]
reads
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Ltoy ¼ LkðQ;A;ΦÞ þ VðΦÞ þ LWðQ;A;ΦÞ þ LYðQ;ΦÞ
ð1Þ

with Lk and V representing standard kinetic terms and
scalar potential. Ltoy includes an SU(3) gauge field, Aμ,
with bare (renormalized) coupling g0 (gs), a Dirac doublet,
Q ¼ ðu; dÞT , transforming as a triplet under SU(3) and a
complex scalar doublet, φ ¼ ðφ0 þ iφ3;−φ2 þ iφ1ÞT , sin-
glet under SU(3). For the latter we use the 2 × 2 matrix
notation Φ ¼ ½φj − iτ2φ��. The model has an UV cutoff
ΛUV ∼ b−1 and includes a Yukawa term, LYðQ;ΦÞ ¼
ηðQ̄LΦQR þ Q̄RΦ†QLÞ, as well as a nonstandard term

LWðQ;A;ΦÞ¼b2

2
ρðQ̄LD⃖μΦDμQRþQ̄RD⃖μΦ†DμQLÞ: ð2Þ

The latter is a Λ−2
UV × d ¼ 6 operator that leaves the model

power-counting renormalizable [20], like it happens for the
Wilson term in lattice QCD [22,23]. Neither LW nor LY are
invariant under purely fermionic chiral transformations.
Among other symmetries, the Lagrangian (1) is invariant

under the global transformations [ΩL=R ∈ SUð2Þ�

χL × χR ¼ ½χ̃L × ðΦ → ΩLΦÞ� × ½χ̃R × ðΦ → ΦΩ†
RÞ�; ð3Þ

χ̃L=R∶ QL=R → ΩL=RQL=R; Q̄L=R → Q̄L=RΩ
†
L=R: ð4Þ

No power divergent fermion masses can be generated as a
term like ΛUVðQ̄LQR þ Q̄RQLÞ is not χL × χR invariant.
Wigner phase and fermion chirality restoration.—Ltoy is

not invariant under the purely fermionic chiral transforma-
tions χ̃L × χ̃R. However, as shown in [20], in the phase with
positive renormalized squared scalar mass (μ̂2ϕ > 0), where
the χL × χR symmetry is realized à la Wigner, a critical
value of the Yukawa coupling, ηcr, exists at which [up to
Oðb2Þ corrections] the effective Yukawa term vanishes. The
renormalized Schwinger-Dyson equations (SDE), say for
the χ̃L transformations read (no sum over i ¼ 1, 2, 3,
jxj ≫ b)

∂μhZJ̃J̃
Li
μ ðxÞÔið0Þi¼ðη̄−ηÞhðD̃i

LðxÞÔið0ÞiþOðb2Þ; ð5Þ

D̃i
L ¼ Q̄L

τi

2
ΦQR − Q̄RΦ† τ

i

2
QL; ð6Þ

with Ôi any χ̃L covariant operator. The current J̃Liμ is given
in Ref. [20]. Owing to parity, similar SDE hold for χ̃R.
At the value η ¼ ηcrðg20; ρ; λ0Þ that solves the equation
η − η̄ðη; g20; ρ; λ0Þ ¼ 0 the SDE take the form of Ward-
Takahashi identities (WTI) and the fermionic chiral trans-
formations χ̃L × χ̃R become symmetries [24] of the model
(1) up to Oðb2Þ terms. In Eq. (5) the dimensionless
coefficient η̄ ¼ η̄ðη; g20; ρ; λ0Þ stems from the mixing of
the χ̃L variations of LW and LY , while ZJ̃ is a multiplicative

renormalization factor (free of logarithmic UV divergencies
at η ¼ ηcr). Symmetries constrain the expression of the EL
so that in the Wigner phase its d ¼ 4 piece is analogous in
form to Ltoy, namely,

ΓWig
4 ≡ Γμ̂2ϕ>0

¼ ΓkðA;Q;ΦÞ
þ ½η − η̄ðη; g20; ρ; λ0Þ�ðQ̄LΦQR þ Q̄RΦ†QLÞ
þ V̂ðΦÞ; ð7Þ

Γk ¼
1

4
ðFFÞþ Q̄L=DQLþ Q̄R=DQRþ

1

2
Tr½∂μΦ†∂μΦ�: ð8Þ

The Wigner phase is thus well suited to determine
the critical value of η, where the effective Yukawa term
disappears from Eq. (7). We stress that, neglecting Oðb2Þ
artifacts, η̄ and ηcr are independent of the subtracted scalar
mass μ̂2ϕ (see Supplemental Material [25], Sec. III) and thus
equal in the Wigner and NG phase. From Eq. (5) ηcr can be
determined, e.g., as the value of η where (no sum over
i ¼ 1, 2, 3, x ≠ 0)

∂μhÃi
μðxÞD̃i

Pð0Þi
hD̃i

PðxÞD̃i
Pð0Þi

¼ 0; Ãi
μ ¼ J̃Liμ − J̃Riμ ; ð9Þ

D̃i
P ¼ Q̄L

�
Φ;

τi

2

�
QR − Q̄R

�
τi

2
;Φ†

�
QL: ð10Þ

An equivalent, but statistically less noisy, condition is
discussed below (Lattice study and results). We stress that
the existence of an ηcr, where the χ̃L × χ̃R transformations
become symmetries of the theory [up toOðb2Þ], is a general
property of the Wigner phase independently of the specific
form of LW . Owing to renormalizability and universality,
changing LW would only modify the values of ηcr, ZJ̃, and
Oðb2Þ artifacts.
Nambu-Goldstone phase and NP anomaly.—Most inter-

esting is the case μ̂2ϕ < 0, where VðΦÞ has a double-well
shape with h∶Φ†Φ∶i ¼ v21; v ≠ 0, so that the χL × χR
symmetry is realized in the manner of NG. In large volume
under any, even infinitesimal, symmetry breaking pertur-
bation the χL × χR symmetry will be spontaneously broken
to SUð2ÞV . Moreover, at η ¼ ηcr residual O(b2v) χ̃L × χ̃R
violating terms will polarize the degenerate vacuum result-
ing from the spontaneous χ̃L × χ̃R symmetry breaking
brought about by strong interactions.
Realization of the χL × χR invariance in the manner

of NG has a key impact on low energy physics. Three
elementary massless Goldstone bosons appear in the
spectrum which need to be included in the EL. In
Ref. [20] it was argued that at η ¼ ηcr the EL describing
the model (1) should include χ̃L × χ̃R violating terms of NP
origin, among which a fermion mass term.
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This conjecture can be checked by studying the
SDE associated with the χ̃L × χ̃R transformations [see,
e.g., Eq. (5)] in the NG phase. Exploiting parity invariance,
we more conveniently evaluate the effective PCAC mass
from the axial SDE (no sum over i ¼ 1, 2, 3, x0 ≫ b)

ZÃ

ZP
mAWI ≡ ZÃ

P
x∂0hÃi

0ðxÞPið0Þi
2ZP

P
xhPiðxÞPið0Þi

����
ηcr

; Pi ¼ Q̄γ5
τi

2
Q;

ð11Þ

where ZÃ ¼ ZJ̃jηcr and ZP are renormalization factors. If
NP χ̃L × χ̃R violating terms were absent in the critical EL,
one should find ðZÃ=ZPÞmAWI → 0 as b ∼ Λ−1

UV → 0.
Lattice simulations (see Lattice study and results) show
that ðZÃ=ZPÞmAWI is not vanishing in the continuum limit.
In the NG phase the EL describing the model (1) is

expressed in terms of effective fermion, gauge, and scalar
fields. The latter, in view of v ≠ 0, are conveniently
rewritten [60] introducing Goldstone (ζ1;2;3) and massive
(ζ0) scalar fields in the form

Φ¼RU; R¼ðvþζ0Þ; U¼ exp½iv−1τkζk�; ð12Þ

where U is a dimensionless field transforming as U →
ΩLUΩ†

R under χL × χR. The nonanalytic field U only
makes sense if v ≠ 0. At η ¼ ηcr the d ≤ 4 EL sector
reads [20] [see Eq. (7)]

ΓNG
4 ¼ c2Λ2

STrð∂μU†∂μUÞ þ c1ΛS½Q̄LUQR þ H:c:�
þ c̃ΛSRTrð∂μU†∂μUÞ þ Γμ̂2ϕ<0

þ OðΛ2
S=v

2Þ; ð13Þ

whereΛS is the renormalization group invariant (RGI) scale
and the term ∝ c1 describes the NP breaking of χ̃L × χ̃R.
Upon expanding U around the identity one gets

c1ΛS½Q̄LUQRþ Q̄RU†QL� ¼ c1ΛSQ̄Q½1þOðζ=vÞ�; ð14Þ

thus a fermion mass term plus a host of more complicated,
nonpolynomial Q̄ − ζ1;2;3

0s −Q vertices.
The NP term (14) was conjectured in Ref. [20] to arise

dynamically in the EL (13) of the theory (1) from the
interplay of strong interactions and the breaking of χ̃L × χ̃R
at the UV scale. The occurrence of this χ̃L × χ̃R violating
term in the EL is essential to account for the nonzero value
we find for ZÃ

P
x∂0hÃi

0ðxÞPið0Þijη¼ηcr
[Eq. (11)] despite

the fact that the operators Ãi
0 and Pi transform differently

under χ̃L × χ̃R. The coefficient c1 in Eq. (14) has been
argued in Ref. [20] to be anOðg4sÞ odd function of ρ. As for
its dependence on the scalar squared mass, c1 is expected to
stay finite in the phenomenologically interesting limit
−μ̂2ϕ ≫ Λ2

S [20,21] and be nonzero only for μ̂2ϕ < 0.
Indeed in our interpretation the NP term (14) arises from
the spontaneous χ̃L × χ̃R breaking which is effective only in

the NG phase where the degenerate vacuum gets polarized
by residual Oðb2vÞ χ̃L × χ̃R breaking effects.
A proper understanding of the NP terms in the

expression (13) requires considering what is the natural
extension of the χ̃L × χ̃R symmetry in the presence of EW
interactions [21]. In that context one finds that maximal
restoration of the chiral fermion symmetry entails the
vanishing of the coefficient c̃ in Eq. (13), leaving only
the NP terms with coefficients c1 and c2, which are
responsible for the dynamical mass of fermions and weak
bosons, respectively [20,21].
At η ¼ ηcr all the NP terms occurring in the right-hand

side of the χ̃L × χ̃R SDE must be RGI, as the left-hand side

of the SDE is. Conservation up to Oðb2Þ of the ZJ̃J̃
LðRÞi
μ

currents makes the left-hand side of the χ̃L × χ̃R SDE scale
invariant independently of μ̂2ϕ.
The full NG phase EL, ΓNG ⊃ ΓNG

4 contains of course an
infinite number of local terms of arbitrarily high dimension,
among which terms of NP origin that break the χ̃L × χ̃R
symmetry. The occurrence of these NP and RGI terms in
the EL will be referred to as a “NP anomaly” in the
restoration of χ̃L × χ̃R symmetry.
Lattice study and results.—We describe the main steps

and results of our numerical study of the model (1) in a
lattice regularization consistent with the exact χL × χR
symmetry. Lattice χL × χR invariance entails relations
between renormalization constants (e.g., ZÃ ¼ ZṼ) and
discretization errors of Oðb2nÞ only (n integer). The argu-
ments of Ref. [20] imply that the NP anomaly leading to
elementary fermion mass generation occurs even if fermion
loops are neglected. Thus in this first investigation we
decided to work in the quenched approximation [61].
Quenching brings key simplifications as scalar and gauge
fields can be generated and renormalized independently
from each other. In the Supplemental Material [25] we give
details on our lattice setup and data analysis.
For a given choice of bare gauge coupling (β ¼ 6=g20),

scalar potential parameters (λ0, m2
ϕ −m2

cr ¼ μ̂2ϕ=Zm2
ϕ
) and

strength (ρ) of the LW term, we tune the bare coupling η, so
as to restore the fermionic chiral symmetry χ̃L × χ̃R. This
task is conveniently carried out in the Wigner phase by
looking for the value of η at which

rAWIðηcr; ρ; λ0; g20Þ ¼
N ðx0; y0; η; ρ; λ0; g20Þ
Dðx0; y0; η; ρ; λ0; g20Þ

����
η¼ηcr

¼ 0; ð15Þ

N ðx0; y0;…Þ ¼ b6
X
x;y

hP1ð0Þ∂FW
0 Ã1;BW

0 ðxÞφ0ðyÞi; ð16Þ

Dðx0; y0;…Þ ¼ b6
X
x;y

hP1ð0ÞD̃1
PðxÞφ0ðyÞi; φ0 ¼

Tr½Φ�
2

;

ð17Þ
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where ∂FW
0 is a forward lattice derivative and Ã1;BW

0

the backward one-point-split lattice version of
Q̄γ0γ5ðτ1=2ÞQ. D̃1

P and P1 are given in Eqs. (10) and
(11), respectively. The time distances x0 and y0 − x0 are
separately optimized so as to isolate the lowest-lying
pseudoscalar (PS) meson and one-Φ particle states. In
Fig. 1 we show rAWI vs η at three values of the bare gauge
coupling, β ¼ 5.75, 5.85, and 5.95. In the quenched
approximation they correspond to lattice spacings of about
0.15, 0.12, and 0.10 fm, respectively, if we conventionally
assume for the Sommer scale r0 ¼ 0.5 fm (as in QCD).
The values of ηcrð6=β; ρ; λ0Þjρ¼1.96 are denoted by red
squares.
In the NG phase we work at η ¼ ηcr, taking into

account its uncertainty. First we compute the effective
PCAC mass (11). For convenience Z−1

P is evaluated in a
hadronic scheme defined in the Wigner phase by taking
Z−1
P r−20 ¼ GW

PS ¼ h0jP1jPSmesoniW at the subtraction
point, MPS, given by the PS meson mass (see below).
As for ZÃ, we exploit the equality ZÃ ¼ ZṼ, entailed
by the χL × χR invariance, and evaluate ZṼ from an exact
WTI.
In Fig. 2 we plot the renormalized quantity

2r0mAWIZṼZ
−1
P vs ðb=r0Þ2. A linear extrapolation shows

that its continuum limit lies about 3 standard deviations
away from zero.
Second, as another check that the effective PCAC mass

ðZÃ=ZPÞmAWI is nonzero, indicating the presence in the
EL of a fermion mass term, we have computed from theP

xhP1ð0ÞP1ðxÞi correlator the mass of the lowest lying
PS meson. Our data for r0MPS are plotted in Fig. 3 as a
function of ðb=r0Þ2 together with the best fit linear
extrapolation to vanishing lattice spacing. The figure
shows that the continuum limit of r0MPS lies above
zero by more than 5 standard deviations. On the other
hand, if r0MPS had a vanishing continuum limit, one
should see r20M

2
PS approaching zero as b2 → 0 with a b4

rate. On a ðb=r0Þ4 scale our r20M
2
PS data lie very

close to the continuum limit and are not compatible
with a “no mechanism” hypothesis (see Supplemental
Material [25]).
Finally, we checked that at η ¼ ηcrðρÞ the magnitude of

ðZÃ=ZPÞmAWI (and M2
PS) is actually controlled by the

strength of fermionic chiral breaking as measured by the
parameter ρ in front of LW (2). An increase of ρ by a factor
1.5 yields an increase of ðZÃ=ZPÞmAWI by a factor of
about 2.4 (see Supplemental Material [25]) in good
agreement with expectations from Ref. [20] and the
above section Nambu-Goldstone phase and NP anomaly.
For a correct interpretation of this finding one should
notice that in more realistic models supporting the mass
generation mechanism under discussion and accounting
for EW interactions, parameters (like ρ) that control the
strength of fermionic chiral breaking, and hence the
NP mass terms, are not completely free, as they are
constrained by the conditions of maximal restoration of
the χ̃L × χ̃R symmetry (see Ref. [21] and Sec. VI of the
Supplemental Material [25]).

FIG. 1. rAWI as a function of η at β ¼ 5.75, 5.85, and 5.95. Red
squares denote the values of ηcr, at which rAWI ¼ 0.

FIG. 2. 2mR
AWIr0 ≡ 2r0mAWIZṼZ

−1
P vs ðb=r0Þ2 in the NG phase

and its linear extrapolation to the continuum limit.

FIG. 3. r0MPS in the NG phase vs ðb=r0Þ2 and its linear
extrapolation to the continuum limit.
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Conclusions and outlook.—In this Letter by means of
pioneering lattice simulations we have demonstrated from
first principles the occurrence of an elementary fermion
mass term as a NP anomaly in the EL of a renormalizable
SU(3) gauge model [Eq. (1)]. In this model a doublet of
strongly interacting fermions is coupled to a colorless
complex scalar doublet via chiral breaking Yukawa and
higher dimensional [LW in Eq. (2)] operators. Indeed, once
bare parameters are chosen so as to ensure (maximal)
restoration of fermionic chiral symmetries, a fermion mass
of the order of the RGI scale (ΛS) is generated in the phase
where the exact symmetry acting on fermions and scalars is
spontaneously broken.
This result represents ground-breaking progress in

quantum field theory as it provides evidence for the
occurrence of a NP obstruction (“anomaly”) to the recovery
of broken fermionic chiral symmetries giving rise to a
dynamically generated fermion mass term.
From a phenomenological viewpoint EW interactions

can be included without introducing tree-level flavor
changing neutral currents by promoting the exact χL ×
Uð1ÞY invariance to a gauge symmetry. Since the χ̃L × χ̃R
transformations now act both on fermions and weak
bosons, one can show that (i) the requirement of maximal
χ̃L restoration leads to stringent constraints on the chiral
breaking parameters and (ii) a unique NP mechanism
generates fermion and weak boson mass terms [21].
This mass generation phenomenon is an alternative to the

Higgs mechanism and provides an interesting starting point
for beyond the SM models. As all masses are parametri-
cally of the order of the RGI scale, the latter must be much
larger than ΛQCD ∼ 300 MeV, if the masses of the top
quark and the EW bosons have to be explained. This
observation suggests the existence of a new non-Abelian
gauge interaction that gets strong at a scale ΛT ≫ ΛQCD,
and of new elementary fermions with OðΛTÞ NP masses.
Crude estimates [20,21] hint at ΛT ¼ Oða few TeVÞ. Since
the condition of χ̃L restoration implies the decoupling of ζ0
(the isosinglet component of Φ), one ends up with models
of the composite Higgs [15,16] type, where the 125 GeV
resonance is a bound state [20,21] in the WW þ ZZ
channel formed owing to the new strong force.
In the theoretical framework sketched above we see also

a chance of understanding the observed fermion mass
hierarchy. Denoting by c1;fΛT the dynamical mass of
the SM fermion f and by g the gauge coupling of the
strongest gauge interaction which f is subjected to, it turns
out [20] that c1;f is Oðg4Þ for the heaviest fermion
generation and possibly of higher order for the other
generations. In this way one can understand, e.g., the
top to τ mass ratio [21]. Further remarks about extending
the model (1) to a phenomenologically sensible theory are
deferred to the Supplemental Material [25].
In summary, by combining the condition of maximal

restoration of fermionic chiral symmetry explicitly broken

at the UV scale (a weak form of ‘t Hooft naturalness) with
the assumption of the existence of a new non-Abelian
gauge interaction with ΛT ¼ Oða few TeVÞ, we find a
novel mechanism that gives mass to elementary fermions
and EW gauge bosons. In models based on this mechanism
the EW scale can be related to the scale of new physics at
which new resonances should be detected in accelerator
experiments.
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