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Gravitational potentials that change in time induce fluctuations in the observed cosmic microwave
background (CMB) temperature. Cosmological structure moving transverse to our line of sight provides a
specific example known as the moving lens effect. Here, we explore how the observed CMB temperature
fluctuations, combined with the observed matter overdensity, can be used to infer the transverse velocity of
cosmological structures on large scales. We show that near-future CMB surveys and galaxy surveys will
have the statistical power to make a first detection of the moving lens effect, and we discuss applications for
the reconstructed transverse velocity.
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Introduction.—Upcoming surveys of the cosmic micro-
wave background (CMB), including those by Simons
Observatory [1] and CMB-S4 [2], and galaxy surveys such
as the Dark Energy Survey (DES) [3] and the survey by the
Large Synoptic Survey Telescope (LSST) [4], will provide
new opportunities for novel cosmological measurements.
In particular, by using the CMB as a cosmological back-
light, secondary fluctuations induced by the interaction of
CMB photons with structures along the line of sight allow
for new methods to study the history and evolution of the
Universe. Such second-order effects include weak gravi-
tational lensing by large-scale structures (see [5] for a
review), the integrated Sachs-Wolfe (ISW) [6] and Rees-
Sciama effects [7], describing the process by which time-
dependent gravitational potentials alter the energy of CMB
photons, and the Sunyaev-Zel’dovich (SZ) effect [8–12],
whereby CMB photons undergo Compton scattering with
free electrons in galaxy clusters and the intergalactic
medium.
Here, we focus on the moving lens effect [13] as a source

of secondary CMB anisotropies and estimate the prospects
for detecting the effect with upcoming observations. The
temperature fluctuations imprinted by the transverse
motion of individual objects are expected to be weak
and can be easily confused with other effects, which makes
detection challenging [14–16]. We consider a new statis-
tical approach to detecting the moving lens effect, which
effectively combines the signal from the many objects with
a common bulk motion. Using this approach, we demon-
strate that data expected from upcoming CMB experiments
and galaxy surveys should have the statistical power to

make a detection of the moving lens effect at high
significance.
A gravitational potential moving with velocity, v⊥,

transverse to our line-of-sight direction, n̂, leads to
CMB temperature fluctuations given (at lowest order) by

Θðn̂Þ ¼ v⊥ · βðχn̂Þ; ð1Þ

where Θ ¼ ΔT=T is the fractional CMB temperature
fluctuation, χ is the conformal distance, and β is the
deflection angle as seen by the lens [5,13,15,17,18]; see
Fig. 1. We can understand the origin of this effect in a few
physically equivalent ways.
The motion of an observer with respect to the CMB

induces a kinematic dipole temperature anisotropy due to
the Doppler boosting of the CMB monopole, and also
results in angular aberration of CMB fluctuations [19,20].
We define the CMB rest frame as the reference frame in

FIG. 1. Sketch of the geometry in the CMB rest frame, for a
lens of potentialΦmoving with transverse velocity v⊥, as seen by
an observer at comoving distance χ from the lens and distance χ⋆
from the CMB last scattering surface.
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which the primary CMB fluctuations are statistically
isotropic, which is not identical to a frame in which the
temperature dipole vanishes. The observed temperature
dipole in the rest frame of the Solar System has an
amplitude of about 10−3 [21], while the anticipated intrinsic
component (the amplitude in the CMB rest frame) is on the
order 10−5, and so the CMB rest frame is often approxi-
mated by boosting to a frame in which the observed dipole
vanishes [22].
In the rest frame of the CMB, a massive object moving

transverse to the line of sight of a stationary observer
generates a gravitational potential that evolves in time. As
CMB photons traverse this time-dependent potential, they
receive a redshift or blueshift in close analogy with the
ISW effect Θðn̂Þ ¼ −2

R χ⋆
0 dχ

_

v⊥ · ∇⊥Φðχn̂Þ ¼ v⊥ · βðχn̂Þ,
where χ⋆ is the conformal distance to the surface of last
scattering and Φ is the gravitational potential. This induces
a characteristic dipole pattern of CMB temperature fluc-
tuations oriented along the object’s transverse velocity.
Next, viewed from the rest frame of the lens, this effect

can be recast as lensing of the (kinematic) CMB dipole seen
by the lens. The photons deflected toward the observer have
a temperature T½1þ v⊥ · ðn̂þ βÞ�, giving at lowest order
Θðn̂Þ ¼ v⊥ · β after transforming to the observer frame.
Finally, for an observer moving with the same peculiar

velocity as the lens with respect to the CMB, one must be
careful to take into account the fact that the photons
deflected into the line of sight of the observer were not
emitted perpendicular to the surface of last scattering (an
effect that is formally of the same order as the lensing
deflection). This change to the emission angle is usually
negligible for CMB temperature fluctuations [23], but it
cannot be ignored in this case, since the dominant temper-
ature source at the surface of last scattering is due to the
Doppler effect and therefore has an intrinsic dipole
anisotropy. The emission angle relative to the line of the
sight to the lens is β, and so the observed temperature
fluctuation evaluated in the frame comoving with the lens is
Θðn̂Þ ¼ v⊥ · ½n̂þ βðχn̂Þ�. One can also arrive at this
expression by treating the kinematic component of the
dipole as a source at infinite distance [24]. This analysis
also demonstrates that the CMB dipole measured in the rest
frame of the CMB (the intrinsic dipole) is physically
distinct from the dipole induced by boosts away from that
frame (the kinematic dipole) [5], and the former can
therefore be reconstructed by measuring how it is lensed
[25], or by measuring spectral distortion of the low multi-
poles [26,27].
Estimator.—We wish to construct a quadratic estimator

for the transverse velocity field v⊥ðn̂; zÞ on large angular
scales (l≲ 100), given maps of the CMB temperature and
of a tracer of the density field at some redshift on small
angular scales (l ≳ 2000), analogous to a CMB lensing
quadratic estimator [28], for example. Our focus is on the
large-scale velocity field, where we anticipate that the

velocity is linear and curl free, such that we can define
a transverse velocity potential ϒðn̂; zÞ, with v⊥ðn̂; zÞ ¼
∇ϒðn̂; zÞ. We use the typical definition of the gravitational
lensing potential ϕ, such that α ¼ ∇ϕ, with

ϕðn̂Þ ¼ −2
Z

χ⋆

0

dχ
χ⋆ − χ

χ⋆χ
Φðχn̂Þ; ð2Þ

where we have assumed spatial flatness. We can construct a
similar potential for the deflection, as seen by the lenses, for
some redshift bin, defined by χimin < χðziÞ < χimax,

ψðn̂; ziÞ ¼ −2
Z

χimax

χimin

dχ
1

χ
Φðχn̂Þ; ð3Þ

such that β ¼ ∇ψ , and that differs from the ordinary lensing
potential ϕ by a ratio of the lens and source distances.
Given an observed map of the CMB temperature, Θobs,

and a map of ψobs as derived from, for example, a survey of
large-scale structure, we can write the desired quadratic
estimator as

ϒ̂ðLÞ ¼NðLÞ
Z

d2l
ð2πÞ2 gðl;LÞΘobsðlÞψobsðL−lÞ: ð4Þ

We have suppressed the redshift dependence of ϒ̂ and ψ ,
and the normalization NðLÞ and filter gðl;LÞ are to be
determined. We are using the flat-sky approximation, so
that l and L are two-dimensional Fourier wave vectors,
and have found the results agree well with a full-sky
estimator, as is also the case with lensing estimators [29].
Following, e.g., Ref. [28], we minimize the estimator
variance subject to the constraint that the estimator is
unbiased, i.e., that we recover the true transverse velocity
potential after averaging over temperature fluctuations and
small-scale density fluctuations ϒðLÞ ¼ hϒ̂ðLÞiΘ;ψ , while
holding large-scale fluctuations fixed. At lowest order, the
correlator is

hϒ̂ðLÞϒ̂ðL0Þi ¼ ð2πÞ2δð2ÞðLþL0Þ½Cϒϒ
L þ NðLÞ�; ð5Þ

where the transverse velocity potential power spectrum is
defined as

Cϒϒ
l ¼ 4π

Δχ

Z
χmax

χmin

dχ
Z

∞

0

dk
k
Pvðk; χÞ
ðkχÞ2 ½jlðkχÞ�2; ð6Þ

and Pv is the dimensionless power spectrum of the three-
dimensional velocity jvj. In practice, there will be addi-
tional contributions to the estimator variance from terms of
second order in the density contrast (see for example [30]).
These are small compared to the signal and noise expected
for future experiments. The estimator assumes roughly
constant transverse velocities over the reshift bin, which is
valid for modes with wavelengths larger than the bin width,
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satisfying l≲ πðχimin þ χimaxÞ=ð2ΔχiÞ. We find that we
must fix the normalization to

NðLÞ ¼
�Z

d2l
ð2πÞ2 C

ψψ
jl−Ljgðl;LÞL · ðL − lÞ

�−1
; ð7Þ

and that the filter that minimizes the variance is

gðl;LÞ ¼ L · ðL − lÞ
CΘΘ;obs
l

Cψψ
jl−Lj

Cψψ ;obs
jl−Lj

; ð8Þ

thereby giving for the noise on a reconstructed mode

NðL; zÞ ¼
�Z

d2l
ð2πÞ2

½L · ðL − lÞ�2
CΘΘ;obs
l

ðCψψðzÞ
jl−LjÞ

2

CψψðzÞ;obs
jl−Lj

�−1

ð9Þ

where we reintroduced the redshift dependence of our noise
estimate.
Signal-to-noise ratio.—We now estimate the signal-to-

noise ratio of the reconstructed transverse velocity poten-
tial, assuming a cosmology consistent with the latest
results from Planck [31]. We use the lensed CΘΘ

l , and
add contributions from the kinetic Sunyaev-Zeldovich
(KSZ) effect, which we take as a constant 3 μK2 in
lðlþ1ÞCTT

l =ð2πÞ [32,33]. For the CMB temperature noise,
we take NΘΘ

l ¼ ðΔ2
T=T

2Þ exp½lðlþ 1Þθ2FWHM=ð8 log 2Þ�.
We show results for a range of CMB noise levels
ΔT ∈ ½0.1; 14� μK–arc min and beam sizes θFWHM ∈ f0.1;
1.4; 5.0g arc min. The noise power for the moving lens po-
tential in each redshift bin is obtained from the galaxy shot
noise using the analytic approximation for the galaxy
number densities dn=dz∝ ðz=z0Þα exp½ð−z=z0Þβ� arcmin−2

with fz0; α; β; ntot½arcmin−2�g taken to be f0.3; 2; 1; 40g and
f0.88; 1.25; 2.29; 12g for LSST [4] and DES [3], respec-
tively. We choose the redshift binning taking into account
the photometric error expected by the these experiments,
σz ¼ 0.03ð1þ zÞ, with each redshift bin width fixed to 4σz,
which amounts to 13 bins in the range z ∈ ½0; 3.7�. Finally,
we assume constant galaxy bias of unity between galaxy and
the matter overdensity. The moving lens potential power
spectrum Cψψ

l is calculated with a nonlinear matter power
spectrum and using the Limber approximation, which is
valid at small scales [34–37]. All spectra were computed
numerically using modified versions of both CAMB [38] and
CLASS [39] with nonlinear corrections implemented with
HALOFIT [40–43], and we checked that the results from the
two codes agreed with one another and also with the halo
model treatment of the matter power described in [44]. We
show the transverse velocity signal and the estimator noise
in Fig. 2.
The most promising route for a first detection of the

moving lens effect comes from cross-correlating the large-
scale transverse velocity reconstructed from the CMB with

that inferred directly from a galaxy survey (a choice that
will give higher signal-to-noise ratio than the autospectrum
of the CMB estimate, but that is not strictly necessary for
detection). We assume that the latter method provides a
precise enough measurement of the large-scale density that
we can infer the large-scale transverse velocity without
noise, which should be a reasonable approximation for the
high number densities of galaxies expected in the surveys
we are considering. We calculate the total signal-to-noise
ratio by approximating the likelihood as Gaussian�

S
N

�
2

¼
X

ll0;XYWZ

CϒXϒ̂Y
l × cov−1ðC̃ϒXϒ̂Y

l ; C̃ϒWϒ̂Z
l0 ÞCϒWϒ̂Z

l0 ;

ð10Þ
where the indices run over redshift bins, the fields with hats
refer to transverse velocities reconstructed from the CMB,
those without a hat refer to the velocities reconstructed from
the galaxy distribution, the tilde refers to spectra including
noise, and the covariance is given by

covðC̃ϒXϒ̂Y
l ; C̃ϒWϒ̂Z

l0 Þ ¼ δll0

2lþ 1
f−1sky

× ðC̃ϒXϒW
l C̃ϒ̂Yϒ̂Z

l þ C̃ϒXϒ̂Z
l C̃ϒYϒ̂W

l Þ:
ð11Þ

To assess the detectability of the moving lens effect, we
take as a null hypothesis a scenario in which there is no
signal in the CMB-reconstructed transverse velocity, which
we also take to have noise diagonal in the redshift bins
(C̃X̂ Ŷ

l ¼ δX̂ ŶN
X̂
l ), and no signal or noise in the cross with

the galaxy-derived transverse velocity (C̃XŶ
l ¼ 0) when

calculating the covariance matrix.
The results for the signal-to-noise ratio with these

assumptions are shown in Fig. 3. We find that with the

FIG. 2. Power spectrum of the transverse velocity potential
(solid) and reconstruction noise (dashed and dot-dashed) in
several redshift bins for two CMB experiments with a 1.4–arc
min beam combined with LSST. Where the signal curves exceed
the reconstruction noise, true mapping of the transverse velocities
will be possible.
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method we described, Simons Observatory combined with
DES will be able to detect the moving lens effect at about
8σ, and CMB-S4 combined with LSST at about 40σ,
meaning that a first detection and subsequent precision
measurement of the moving lens effect should be possible
in the next several years. The signal-to-noise ratios in the
results we have shown are limited in part by the contri-
butions to the temperature spectrum that come from the
KSZ effect and lensing on small scales. Reconstructing and
removing the fluctuations from the KSZ effect, which may
be possible with the upcoming experiments [45,46],
together with applications of delensing such as in [47]
may improve the signal-to-noise ratio.
Biases.—The analysis above ignored other secondary

CMB fluctuations, which may contribute to the estimator in
Eq. (4). We now discuss such biases and their mitigation.
Ordinary lensing introduces two biases to the transverse

velocity estimator. The first bias is proportional to the long-
wavelength temperature gradient and takes the form

ϒϕψðLÞ ≃ ΘðLÞNðLÞ
Z

d̈2l
ð2πÞ2 C

ϕψ
jl−Ljgðl;LÞL · ðL − lÞ;

ð12Þ
where we have approximated the change to the temperature
fluctuations due to lensing to first order in the deflection as
ΔΘðn̂Þjlens ≃∇Θðn̂Þ · αðn̂Þ. There exists a second bias
from ordinary lensing,

ϒΘψ ðLÞ ≃ ϕðLÞNðLÞ
Z

d2l
ð2πÞ2 C

Θψ
jl−Ljgðl;LÞL · ðL − lÞ;

ð13Þ

which can be understood as the large-scale gravitational
potential fluctuations distorting small-scale ISW or Rees-
Sciama temperature fluctuations.

The KSZ effect generates CMB temperature fluctuations
of the form ΔΘðn̂ÞjKSZ ¼ −

R
dχvdðχn̂Þdτ=dχðχn̂Þ, where

dτ=dχðχn̂Þ ¼ σTaneðχn̂Þ, σT is the Thomson cross section,
a is the scale factor, ne is the free electron number density,
and vd is the remote CMB dipole projected along the line of
sight, given by vd ¼ 3

Rfd2n̂Θ1ðn̂e; n̂Þðn̂e · n̂Þ=ð4πÞ. We
approximate the dipole seen by distant electrons as domi-
nated by the Doppler effect Θ1 ≃ ve · n̂, where ve is the
electron velocity. The contribution from the KSZ effect to
our transverse velocity estimator is then

ϒKSZðLÞ ≃ −vdðLÞNðLÞ
Z

d2l
ð2πÞ2 C

δτψ
jl−Ljgðl;LÞ; ð14Þ

where Cδτψ
l is the cross-correlation between ψ and dτ=dχ,

with electron fluctuations taken to be proportional to matter
fluctuations, i.e., δne=n̄e ¼ δm.
We now assess how large these biases would be if

one were to naively apply the estimator shown in Eq. (9) to
the data. We define the spectra of the biases as
hϒBðlÞϒBðl0Þi ¼ ð2πÞ2BB

lδ
ð2Þðl þ l0Þ, where B ∈

fϕψ ;Θψ ;KSZg and plot the results in Fig. 4 for the
redshift bin z ∈ ½1.00; 1.25�. We omit cross spectra between
different biases, which are smaller than the autospectra.
One can see that the ϕψ bias introduced in Eq. (12) traces
the structure of the primary CMB temperature, due to the
fact that our transverse velocity estimator is very similar to
an estimator designed to reconstruct the large-scale primary
temperature fluctuations from observation of small-scale
temperatures and lenses [48]. This bias is the largest of
those we have considered, and it is smaller than the signal
on large scales that dominate the signal to noise. (We find
f50%; 75%; 90%g of the contribution to the signal-to-noise

FIG. 3. Signal-to-noise ratio of the transverse velocity estimator
for a range of CMB noise levels and beam sizes, combined with
LSST and DES. The approximate anticipated noise levels of
Simons Observatory and CMB-S4 are shown; both have roughly
a 1.4–arc min beam.

FIG. 4. Comparison of the transverse velocity power spectrum
with ordinary lensing and KSZ biases for the redshift bin z ∈
½1.00; 1.25� for a CMB experiment with ΔT ¼ 1 μK–arc min and
a 1.4–arc min beam combined with LSST. The dominant
contribution to the signal-to-noise ratio comes from large scales
l≲ 50, where the biases are smaller than the transverse velocity
signal. Furthermore, these biases can be mitigated using the
methods described in the main text.

PHYSICAL REVIEW LETTERS 123, 061301 (2019)

061301-4



ratio comes from modes satisfying l≲ f20; 50; 100g.)
Our knowledge of the large-scale CMB temperature
allows us to cleanly remove the effects of the ψϕ bias
by subtracting a best-fit multiple of the observed large-
scale temperature fluctuations from the reconstructed
ϒ map. This bias could also be reduced by delensing the
temperature map [47,49,50] before estimating the trans-
verse velocity potential, or by suppressing its contribution
to the estimator by bias hardening [51].
The Θψ bias introduced in Eq. (13) is most important on

large scales, though it is about two orders of magnitude
smaller than the transverse velocity signal on most scales
and redshifts. Our estimate of this bias included only the
linear contributions to the ISW effect, but the nonlinear
Rees-Sciama effect may increase CΘψ

l on small scales,
thereby boosting the bias compared to what we have
calculated here. The Θψ bias can also be mitigated by
subtracting from the reconstructed ϒ map the best-fit
multiple of the gravitational lensing field ϕ, which will
be measured at high significance with the CMB experi-
ments we are considering. The KSZ bias is subdominant on
all scales of interest, though it too may be possible to
reconstruct and remove with the experiments being dis-
cussed here [45,46].
Discussion.—We demonstrated that by using the esti-

mator we described, upcoming CMB experiments like
Simons Observatory and CMB-S4, combined with galaxy
surveys such as DES and LSST, have the statistical power
to make a detection of the moving lens effect at high
significance, and we also computed the leading biases and
discussed how they can be mitigated.
Using the CMB to reconstruct the large-scale transverse

velocity field allows for the use of small-scale CMB
measurements to probe long-wavelength cosmological
fluctuations at lower redshift, much like with CMB lensing
[28], the KSZ effect [45,46,52], and the polarized SZ effect
[53–56]. Since the observation of large-scale modes is
typically challenging, and the number of independent
modes on large scales is inherently limited, it is generally
useful to expand the list of methods to access large scales
observationally. As a specific application, one could
imagine using the large-scale velocity modes reconstructed
with the moving lens effect to cancel cosmic variance [57]
for the purpose of constraining local non-Gaussianity
(which induces a scale-dependent bias on large scales
[58]), in a way similar to what has been explored for
CMB lensing [59] and the KSZ effect [60]. Since the
moving lens effect is purely gravitational in nature, it can in
principle be used to measure quantities that cannot be
accessed directly with the KSZ effect alone, such as the
absolute growth rate, which is useful for studying dark
energy [61], modified gravity [62], and the effects of
neutrino mass [63]. The reconstruction method we dis-
cussed requires knowledge of the small-scale galaxy bias;
however, it will generally be subject to different systematic

uncertainties and will use measurements on different scales
than other techniques (e.g., the direct inference of trans-
verse velocities from a galaxy survey). Combined with
other probes, observations of the moving lens effect can
also help reduce degeneracies due to astrophysical uncer-
tainties such as the optical depth degeneracy of the KSZ
effect [46].
The major leaps forward in the precision of near-future

CMB and galaxy surveys will open many new cosmologi-
cal opportunities. We have described a method that will
allow for the first detection of the moving lens effect with
forthcoming data, and will provide a novel probe of large-
scale transverse velocities with a host of cosmological
applications.
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