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We investigate, both experimentally and theoretically, the interpretation of the free-electron wave
function using spontaneous emission. We use a transversely wide single-electron wave function to describe
the spatial extent of transverse coherence of an electron beam in a standard transmission electron
microscope. When the electron beam passes next to a metallic grating, spontaneous Smith-Purcell radiation
is emitted. We then examine the effect of the electron wave function transversal size on the emitted
radiation. Two interpretations widely used in the literature are considered: (1) radiation by a continuous
current density attributed to the quantum probability current, equivalent to the spreading of the electron
charge continuously over space; and (2) interpreting the square modulus of the wave function as a
probability distribution of finding a point particle at a certain location, wherein the electron charge is always
localized in space. We discuss how these two interpretations give contradictory predictions for the radiation
pattern in our experiment, comparing the emission from narrow and wide wave functions with respect to the
emitted radiation’s wavelength. Matching our experiment with a new quantum-electrodynamics derivation,
we conclude that the measurements can be explained by the probability distribution approach wherein the
electron interacts with the grating as a classical point charge. Our findings clarify the transition between the
classical and quantum regimes and shed light on the mechanisms that take part in general light-matter
interactions.
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Spontaneous radiation from charged particles has long
been a major field of interest for many quantum electro-
dynamical (QED) investigations. A large group of such
phenomena, with implications on both fundamental science
and technology, is the radiation from free electrons:
Cherenkov [1], transition [2], diffraction [3], undulator
[4], and Smith-Purcell [5] radiation are common examples.
Although these effects can be almost fully explained by a
classical theory of radiation excited by the motion of point
charges, the wave nature of the particles can only be
accounted for by a fully quantum theory, namely QED.
Attempts to incorporate the notion of the electron wave

function into our classical understanding of radiation
through Maxwell’s equations could be done in different
ways and introduce subtle ambiguities. Interestingly, this
problem dates to the very first days of quantum mechanics.
The interpretation of the square modulus of the electron
wave function jψ j2 multiplied by the electron charge e and
velocity v as the current density, was contemplated by
Erwin Schrödinger, leading to a theoretical inconsistency
regarding the interaction with the electromagnetic field [6].
This mystery was resolved by Born [7], by interpreting the
wave function as the probability amplitude. Nevertheless,
the interpretation of the wave function still gives rise to
different approaches in the literature even today, with
certain problems treating the charge and current densities
of a single electron as the source of radiation [8–11], or

disregarding the consequences of considering a wide
electron beam [12–15]. These approaches, while theoreti-
cally appealing, contradict our understanding of sponta-
neous emission as an incoherent process emerging from
quantized charged particles. Therefore, our aim is to revisit
the fundamental question of the interpretation of the wave
function by investigating Smith-Purcell radiation as a
representative of spontaneous radiation phenomena from
free electrons. Our findings point to conclusions that might
also be relevant for a variety of related light-electron
quantum effects.
Smith-Purcell radiation (SPR) has been the subject of

intense investigation since its discovery in 1953 [5]. The
radiation, generated by the passage of a swift electron next
to a grating, has the potential of creating light sources in
wavelength ranges which are unreachable using other
technologies, such as deep UV and x ray [16,17]. Many
classical theories, treating the electron as a point charge,
were developed to explain this phenomenon. These include
constructive interference [5], derivation of the reflected
fields due to the electron evanescent field [18], as well as
analyzing the induced currents on the grating’s surface
[19]. On the other end of the theoretical spectrum, QED
analysis treated the electron as a plane wave in the
transverse dimension [20–26], explained in quantum terms
the Smith-Purcell dispersion relation [20,21], predicted
quantum corrections [22], and analyzed the effect of the
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longitudinal size of the single electron on stimulated [24]
and spontaneous [26] radiation. The radiation pattern in the
point-particle limit of classical physics and the plane-wave
solution of QED in the zero-recoil limit agree as a
consequence of the correspondence principle, as ℏ is absent
in both results. In this regime, the radiation is always
spatially diverging [see Fig. 1(a)].
However, when trying to describe wide but finite

electron beams, one may encounter difficulties reconciling
the classical and quantum theories for the following
reasons. First, electron optical elements, used to shape
and focus electron beams in electron microscopy, coher-
ently manipulate the phase of the electron wave function
[27,28]. Second, currents not exceeding 50 nA ensure that
on average, only a single electron impinges on a sample,
if the interaction length with the latter is short (≤ 100 μm)
and the electron is swift (v > 0.1c, where c is the speed
of light). Last, under quite standard working conditions it
is possible to generate electron beams with very large
transverse coherence (significantly larger than optical
wavelengths) using field emission guns (FEGs) [29–32].
Following the former arguments, this large coherence
of electron beams can be attributed to the width of a
single-electron wave function. This observation renders
the semiclassical treatment ambiguous, as will be
described below.
To describe radiation from wide electron beams semi-

classically, a few approaches were employed: classical,
transverse line currents were used to model the beam,
predicting the interaction with two dimensional c-shaped
arrays [12], two dimensional hole arrays [13,14], and two
dimensional photonic crystals [23]. Another example is
the Maxwell-Schrödinger approach [11,33], wherein the
Schrödinger wave function of the electron is solved, and the
current density is derived from it, thereby acting as a source
term in Maxwell’s equations.

In these methods, the emitted radiation is calculated
classically, and the spatial coherence of the source current
is an underlying assumption. This is equivalent to saying
that the electron charge is distributed in space according
to the squared amplitude of the wave function. Let us
consider for simplicity that an electron beam has been
coherently focused to a wave packet state ψðr; tÞ ¼
ψTðrT; z − vtÞ exp½ikz − iðE=ℏÞt� [E, k, and v, are the
electron’s energy, wave vector and group velocity, respec-
tively, and rT ¼ ðx; yÞ]. Let us assume that the slowly
varying transverse wave packet jψT j2 has only a lateral
width d parallel to the rulings of the grating [x axis in
Fig. 1(b)]. Following Reimer and Kohl [27], we identify the
electron current as J ¼ eðℏ=2meiÞψ∇⃗ψ þ c:c: ≅ evjψT j2
(where v ¼ ẑℏk=me with me denoting the electron mass)
resulting in the line currents employed in Refs. [20–24].
Following Jackson [34], we obtain a classical relation
between the spectral radiant power of the wide current
density and the point-particle result:

�
d2P
dΩdω

�
line

¼
����
Z

dxjψTðxÞj2e−in̂·x̂qx
����2
�

d2P
dΩdω

�
point

ðincorrectÞ;

ð1Þ

where q ¼ 2π=λ is the wave number of the emitted
radiation of wavelength λ, and n̂ is the direction of
observation. If the wave function’s transverse range much
exceeds the radiated wavelength, i.e., d ≫ λ, then the
Fourier transform prefactor in the above equation becomes
a sharp distribution in n̂ · x̂, centered around 0 and having a
width ∼λ=d. Therefore, Maxwell’s equations predict that
this radiation should be collimated in the ruling’s direction
(n̂ · x̂ ¼ 0), with reduced azimuthal divergence, as illus-
trated in Fig. 1(b).
However, an alternative semiclassical approach can give

contradictory conclusions [see Fig. 1(c)]: the electron
always interacts with the grating as a point charge, and
the transverse shape of jψ j2 gives the probability density for
the transverse coordinate of the interaction. According to
this treatment, which is used, for example, in electron
energy loss spectroscopy [35] and in photon-induced near-
field electron microscopy [36,37], the correct input to
Maxwell’s equations in a semiclassical treatment is a
moving point charge, located randomly in the transverse
coordinate according to a probability distribution jψ j2:
ðd2P=dΩdωÞline ¼

R
dxjψTðxÞj2ðd2P=dΩdωÞpoint [see also

Eq. (4)]. The emitted radiation in this case will not be
collimated, no matter what the lateral width of jψT j2 is,
since the radiation is emitted from a point each time (and is
averaged over different points according to the transverse
width of the wave function).

(a) (b) (c)

FIG. 1. Schematic description of the research question. (a) A
classical point charge electron produces highly diverged radia-
tion. (b) The charge-density semi classical approach predicts
collimated radiation. (c) The probability semiclassical approach
predicts high divergence as in the classical treatment.
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In the following, we investigate SPR from a wide
electron beam both experimentally and theoretically. In
the single-electron-at-a-time regime, our experimental and
theoretical results show that for different wave packet
widths the emitted radiation is always highly diverged in
the azimuthal dimension, with no significant difference in
the angular distribution, pointing towards the probability
distribution approach as the correct interpretation of the
wave function.
The experimental setup is presented in Fig. 2. A metallic

grating of period 416 nm was placed inside the viewing
chamber of a 200 keV FEI Tecnai transmission electron
microscope (TEM). The lenses of the TEM were used to
manipulate the electron beam spatial profile. The experi-
ment was repeated twice: for a narrow and a wide electron
beam. As we show below, both experiments resulted in the
same angular distribution.
FEG TEMs usually demonstrate very large transverse

coherence lengths (TCLs). In our case, the TCL of the
beam was estimated by the Fresnel fringe method [27,38] at
the limiting aperture of 150 μm in diameter. The method,
limited mainly by the SNR of the TEM image, provides a
lower bound on the coherence length, measured to be
2.5 μm [Fig. (S2) in the Supplemental Material [39] ]. In
order to obtain large SNR in the emitted radiation, we used

a high current density. However, the TCL can be much
larger if lower current densities and smaller apertures are
used, wherein TCL values exceeding one millimeter were
reported using a biprism [30,31], and holograms of tens of
microns in size were successfully used to generate desired
patterns in the far field [47–49]. It is well known that the
ratio between the transverse coherence length and the beam
size is conserved in electron optical systems [29,31,32];
therefore, measuring the beam waist on any other plane of
the optical system provides a lower bound estimate for the
coherence length.
The beamwas first corrected for astigmatism and focused

to the smallest spot possible. This narrow beam, 300 μm in
size, has a TCL of at least 5 μm, according to the consid-
erations employed above. The wide beam was generated,
using the same electron source, by adjusting the stigmator
lens so that the focus of the ruling axis alone was obtained
closer to the lens. As a result, the beam size at the grating
location was increased to 2000 μm, giving a TCL of at least
33 μm, more than 60 times larger than the optical wave-
length. As in most Smith-Purcell experiments, all electrons
eventually hit the grating, and the interaction length (esti-
mated to be∼10 μm) is determined by the angle between the
electron beam and the grating [50]. Comparing the inter-
action length to the average spacing between electrons in the
beam, davg ¼ 800 μm (for a current of 40.8 nA), shows that
our experiment is done at the single-electron regime.

(a)

(b)

(c)

FIG. 2. Experimental setup. (a) Side view of the viewing
chamber of the transmission electron microscope. (b) and
(c) top view of the setup for the case of a narrow (b) and wide
(c) electron beam. The radiated power was measured in both
cases for different values of ϕ.

(a)

(b)

(c)

FIG. 3. Experimental results. (a) and (b) images of the grating
plane as observed for the case of narrow and wide electron beams,
respectively, for different values of the azimuthal angle ϕ
(marked). (c) Normalized power of SPR as a function of the
azimuthal angle ϕ for narrow and wide electron beams, showing
no significant difference between the two. The split in the
measured stripe in (a) at wide angles is a result of double
reflection from the viewing chamber window.
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In order to measure the Smith-Purcell radiation, two
achromatic doublets were positioned outside the viewing
chamber of the TEM, imaging the grating plane on a CCD
camera. Let us define θ, the elevation angle, as the angle
between the photon momentum and the z axis, whereas ϕ,
the azimuthal angle, is the angle between the projection
of the photon momentum on the xy plane and the y axis,
where the axes are defined in Fig. 2. Figures 3(a) and 3(b)
present the images acquired for angle θ ¼ π=2, for different
ϕ values and for narrow (a) and wide (b) electron beams. As
can be seen in Fig. 3(c), the difference in angular spread
between the beams is not significant, and that in both cases
the spatial divergence is large, decreasing to about 60% at
around 30 deg.Were the current density interpretation of the
wave function true, there should have been a significant
difference in the divergence between the two experiments,
proportional to the ratio between the TCLs of the two beams
(differing by almost an order of magnitude). More specifi-
cally, the wide beam should have resulted in a divergence of
ðλ=dÞ ≈ 15 mrad, or 0.87 deg, which is about 30 times

smaller than the measured value of 30 deg. Therefore, it is
evident that only the probabilistic point charge analysis of
the phenomenon agrees with the experiment.
The theoretical analysis of the spontaneous emission

pattern of arbitrarily wide Dirac electrons passing above a
periodic grating is detailed below. The initially noninter-
acting system of photons and a single electron is subject to
the unperturbed Dirac Hamiltonian,

H0 ¼ cα · pþ βmec2 þ
X
q;nσ

ℏωqnσa
†
qnσaqnσ; ð2Þ

where α ¼ ðα1;α2;α3Þ and β are the Dirac matrices, p ¼
−iℏ∇ the momentum operator for the electron, ωqnσ; aqnσ
the frequency and annihilation operator of the electromag-
netic field, q the photon momentum, σ ¼ 1, 2 the two
polarizations, and n the band index of the periodic modes.
The boundary conditions due to the periodic grating (of
period Λ) along the z axis impose periodic modes for the
electromagnetic field:

A ¼
X
q;n;σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ

2ϵ0Vωq;n;σ

s �
aq;n;σ

X∞
m¼−∞

ϵm;qnσðrTÞAm;qnσðrTÞeiqm·r þ H:c:

�
; ð3Þ

where ϵ0 is the vacuum permittivity, and V the quantization
volume. Each mode qσn is composed of an infinite number
of momenta components with index m and momentum
qm ¼ qþ ð0; 0; κmÞ ¼ ðqx; qym; qz þ κmÞ, where κm ¼
mð2π=ΛÞ and qym ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jqj2 − ðqz þ κmÞ2 − q2x

p
(thus giv-

ing qm¼0 ¼ q), and ϵm;qσn is the field polarization vector of
the mth component (a unit vector in space). The Am;qσn

coefficients satisfy a normalization condition over the
transverse coordinate rT ¼ ðx; yÞ P

m

R
d2rT jAm;qnσj2 ¼

1 (the mode normalization is approximated by the regular
free-space form, as we shall later restrict ourselves to free-
space dispersion).
The modes qσn corresponding to SPR resonances have a

propagating part eiq0·r and evanescent parts for m > 0 [21].
Only the evanescent part of the mode carries enough
longitudinal momentum, qz þ κm, necessary for momen-
tum conservation in the Smith-Purcell emission. When an
SPR photon is detected in the far field, its generation was
made possible due to the interaction of the electron with the
evanescent part (near field) of the same mode it occupied
(see Fig. 4).
The interaction Hamiltonian is readily given by taking

p → pþ eA in the Dirac Hamiltonian in Eq. (2), i.e.,
Hint ¼ ecα ·A. The transition rate for spontaneous
emission wsp

q;nσ between the initial and final states
can be calculated using the Fermi golden rule [21].
For this manner, we describe the initial electron-photon
state as a superposition of free-space electron modes

multiplied by the electromagnetic vacuum jψ ii ¼ j0i ⊗P
ki
uiðsi;kiÞð1=

ffiffiffiffi
V

p Þψ̃ðkiÞjkii, where ui is the initial
four-component spinor of the electron (with spin state
si), and where ψ̃ðkiÞ is the initial spectral envelope of the
wave function, assumed to be sharply peaked near the
carrier initial wave vector k0i. This assumption means that
the electron wave function has a slowly varying enve-
lope (SVE) in the spatial domain [51]. The spectral
radiant power P per unit solid angle Ω per frequency
ω is ðd2P=dΩdωÞ ¼ ℏω

P
n;σ ρphðω;qnσÞwsp

qnσ, where
ρph is the photon density of states. If ρph and ωqnσ are

FIG. 4. Illustration of spontaneous Smith-Purcell emission
from a wide electron. Left, momentum space description for
ϕ ¼ 0. Right, real space. The blue cloud above the grating
represents the electron wave function that interacts with the
periodic evanescent electromagnetic field (red), thanks to the
additional momentum provided by the grating (green).
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approximated by their free-space expressions, Vω2=2π3c3,
and cq, respectively, and when the zero-recoil limit for the
electron (valid for ℏω ≪ 2mec2γ) is assumed, we find (full
derivation is available in section C of the Supplemental
Material [39])

d2P
dΩdω

¼
Z

d2rT jψTðrTÞj2
d2Pclass

dΩdω
ðrTÞ; ð4Þ

where ψTðrTÞ is the transverse part of the spatial electron
wave function. In Eq. (4), ðd2Pclass=dΩdωÞðrTÞ denotes
the “classical” radiation pattern for a point particle at the
transverse position rT :

d2Pclass

dΩdω
ðrTÞ ¼

ℏc2αβ
ðβ−1 − cos θÞ3

X
nσ

X∞
m¼−∞

κ2mjEm;qnσðrTÞj2

×
sinc2½ω−ωSP;m

Δωint
�

πΔωint
; ð5Þ

where α ¼ e2=4πϵ0ℏc is the fine structure constant
and β ¼ v=c is the dimensionless electron velocity.
In the above expression, we defined the evane-
scent mode transverse envelope as jEm;qnσðrTÞj2 ¼
e−2αmyjẑ · ϵ̂�m;qnσðrTÞA�

m;qnσðrTÞj2, containing the familiar
exponential decay away from the grating plane (note that
αm ¼ −iqym > 0 is the evanescent wave inverse decay
length). The radiation pattern consists of a series of
resonances centered about the classical (zero order in ℏ)
SP frequencies ωSP;m ¼ cκm=ðβ−1 − cos θÞ. Each reso-
nance is broadened due to the finite interaction length of
the electron Lint, thereby introducing the interaction band-
width Δωint ¼ ½c=ðβ−1 − cos θÞ�ð2=LintÞ.
Remarkably, we can interpret Eq. (4) by considering

semiclassical arguments. Indeed, it appears that the correct
semiclassical interpretation is the one described in
Fig. 1(c). The emission from a “classical” electron,
Eq. (5) and Fig. 1(a), depends on the location of that
electron within the evanescent mode. When the more
accurate treatment of a quantum electron with an arbitrarily
wide wave function is employed, it introduces a transverse
probability density pðrTÞ ¼ jψTðrTÞj2, and the emitted
radiation is the weighted average over all point-particle
emissions along the transverse dimension. This is equiv-
alent to saying that the wide quantum electron is emitting
radiation like a classical point electron, thereby emitting
azimuthally divergent radiation, with some probability
determining where the interaction would occur precisely.
Our experimental results, backed with the theoretical

derivation, show that the azimuthal dependence of the
emitted radiation does not change with the width of the
beam. In other words, the continuous current density
interpretation of the wave function is refuted. The results
imply that the theoretical analysis of some previous works
rely on an incorrect description of electron beams. In
contrast, our theory suggests an interesting and nontrivial

semiclassical interpretation to the emission process, imply-
ing that the Smith-Purcell effect from slowly varying,
nonrecoiled electron wave packets is local even in the
quantum regime. This interpretation might shed light on the
mechanisms that take part within the process of sponta-
neous emission from free electrons, such as electron wave
function decoherence, or collapse [52], and perhaps also
clarify the transition between the classical and quantum
regimes of such problems. Moreover, the probability
density description of the wide electron should be valid
to other radiation mechanisms from wide electrons, such as
optical diffraction radiation [53], and presumably also to
other charged negative and positive particles, including
muons, protons, and positrons.
An interesting outlook from this study is to extend the

quantum analysis to the regime of temporally coherent,
wide multiple-electron pulses [54,55]. In the classical
description, photons that are emitted from different elec-
trons in the same electron pulse can interfere, and the
spatial coherence of the beam affects the radiation pattern
[34,56]. In the quantum picture, a single paraxial electron
wave packet can never demonstrate this phenomenon. This
follows from our study, as well as other arguments such as
charge quantization (the single electron cannot be divided
into smaller constituents that may radiate coherently).
However, it is not forbidden that a multiparticle state of
copropagating electrons emits photons that coherently
interfere, as predicted by the classical analysis [56]. The
emitted optical angular spectrum might, therefore, provide
a clear distinction between electron beams that carry a
single electron or multiple electrons.
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