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Living cells respond to spatially confined signals. Intracellular signal transmission often involves the
release of second messengers like Ca2þ. They eventually trigger a physiological response, for example, by
activating kinases that in turn activate target proteins through phosphorylation. Here, we investigate
theoretically how positional information can be accurately read out by protein phosphorylation in spite of
rapid second messenger diffusion. We find that accuracy is increased by binding of kinases to the cell
membrane prior to phosphorylation and by increasing the rate of Ca2þ loss from the cell interior. These
findings could explain some salient features of the conventional protein kinase Cα.
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Living cells respond to external chemical and physical
stimuli. In many cases, external factors result in global
cellular responses with substrate-stiffness dependent cell
differentiation being a particularly dramatic example [1]. In
other cases, signals carry spatial information on a subcellular
scale [2]. In this way, the localized uptake of extracellular
material through endocytosis can be initiated [3] as well as
targeted release through exocytosis [4], amoeba migrate
along chemical gradients [5], neurons reinforce or weaken
synapses [6,7], and immune cells polarize when making
contact with antigen presenting cells [8].
Typically an external stimulus is translated into the

release of a second messenger [9], for example, cyclic
Adenosine-Monophosphate, Ca2þ ions, and diacylglycerol
(DAG). These then activate further downstream responses.
For Ca2þ, this involves the Ca2þ binding protein calmodu-
lin (CaM) as well as the family of conventional protein
kinases C (PKC). For activation, the conventional PKCα
requires simultaneous binding to DAG in the plasma
membrane [10]. The signal is further relayed by phospho-
rylating target proteins, either directly as is the case for
PKC or indirectly by activating kinases as is the case for
CaM. For example, the strength of synapses can be
regulated by phosphorylating neuroreceptors and other
synaptic proteins following a localized Ca2þ release in
the synapse [11,12]. The spatial distribution of phospho-
rylated proteins is thus a representation of the site of Ca2þ
release.
Work on physical limits of detecting spatial information

contained in cellular signals has so far focused on gradient
sensing [13–15] and on extracting positional information
from chemical gradients [16], for example, from the bicoid
gradient in developing drosophila flies [17,18]. Also, a
possible role of cell-cell communication for an efficient

detection of shallow gradients has been investigated
[19,20]. In this Letter, we ask how accurately cells can
detect the position of a transient signal and consider the
spatial distribution of phosphorylation events in response
to localized Ca2þ release. We find that kinases that are
activated only after binding to the membrane detect the
position of an incoming signal better than cytosolic kinases.
Typically, the estimation error decreases with the rate at
which Ca2þ unbinds from the kinase and is lost from the
system. Furthermore, it decreases more slowly than the
inverse of the square root of the number of Ca2þ ions in a
signal.
We start with the case of a diffusible kinase, which we

assume to be abundant. In this case, different Ca2þ ions are
independent of each other as they do not compete for
binding sites and we consider first a single Ca2þ released
into the cell interior at x ¼ 0, see Fig. 1(a). Below, we will
use the results for a single Ca2þ ion to treat the case of Ca2þ
puffs. We assume direct association of the Ca2þ ion with
the kinase at rate νa. After binding Ca2þ, the kinase is
active and phosphorylates target proteins at rate νp. Ca2þ
dissociates from the kinase at rate νd. Free Ca2þ is lost from
the system at rate νl. The diffusion constants of Ca2þ and
the kinase are DC and DK , respectively. Finally, we specify
the geometry: the membrane is located at z ¼ 0 and extends
infinitely into the x direction. We neglect the dynamics in
the z direction and the intracellular space is the half-space
with z ≥ 0. We will call this the CaM scenario.
For further analysis, we consider the case, in which the

rate of target protein dephosphorylation is significantly
lower than the overall rate at which a Ca2þ ion leaves the
system. In this way, all target proteins that have been
phosphorylated as a consequence of Ca2þ entry remain so
at the time the ion is lost. We furthermore neglect any
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motion of the target proteins and are interested in the
distribution of the phosphorylation events along the x axis
that have occurred before the Ca2þ ion is lost. This amounts
to averaging the response over time. We then consider the
average position of the phosphorylation events along the
x axis, x̂, as the estimated position of Ca2þ release.
In Fig. 1(b), we present the probability distribution P of

the estimated positions of Ca2þ release obtained from
numerical simulations of 106 Ca2þ release events. In our
numerical simulations, we draw the time Δt to the
occurrence of the next event form an exponential distri-
bution. The mean of this distribution is given by the inverse
of the total rate of all reaction events possible in the present
state (attachment and loss if Ca2þ is not attached to the
kinase, detachment, and phosphorylation otherwise). We
then draw the molecules’ next position in x direction from a
Gaussian distribution with variance 2DiΔt, i ¼ C, K. Then
the actual event is determined and the corresponding action
performed. The resulting distribution P is centered around
x ¼ 0 and more peaked than a Gaussian.
Now consider a kinase that needs to bind to the

membrane for activation, see Fig. 1(c). Membrane binding
occurs at rate νb and unbinding at rate νu. It has been shown
that, following Ca2þ stimulation, the translocation of PKCα
to the membrane is independent of the cytoskeleton [21].
Therefore, we focus our attention on diffusive transport of

the kinase. On the membrane, diffusion is reduced com-
pared to transport in the cytoplasm [22]. For simplicity,
we assume that a membrane-bound kinase is immobile.
All other processes are the same as in the CaM scenario.
We will refer to this case as the PKC scenario.
In the numerical simulations of the PKC scenario,

we have to account explicitly for the dynamics in the
z direction. In the simulation, the boundary is taken into
account in the following way [23,24]: if a diffusion step
leads to a position outside the simulation domain, then the
particle binds with a probability that is proportional to the
binding rate νb. In the opposite case, it is reflected. If the
particle remains within the simulation domain after a
diffusion step, there is still a possibility that it has bound
to the membrane along its path. The corresponding prob-
ability is proportional to the binding rate and to a factor that
depends on the distance of the particle to the domain
boundary: exp f−zðtÞzðt0Þ=½DKðt0 − tÞ�g, where zðtÞ and
zðt0Þ are the z coordinates of the particle at the time t of the
previous reaction event and the time t0 of the current
reaction event. As for the CaM scenario, the distribution P
of estimated Ca2þ release sites deviates from a Gaussian
distribution, see Fig. 1(d). Note that, for the same values of
the phosphorylation, attachment, detachment, and loss
rates, the distribution is narrower compared to the CaM
scenario.
In both scenarios, the average total number Np of

phosphorylation events is proportional to the phosphoryla-
tion rate and decreases with increasing detachment rate νd,
see Figs. 2(a) and 2(b). In the CaM scenario, Np;CaM ∝ ν−1d .
In the PKC scenario we can observe two different scaling
regimes as a function of νd. Furthermore, Np;PKC ∝ ν−1u .
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FIG. 1. Determination of the Ca2þ entry site through phos-
phorylation of a target protein. (a) Illustration of the CaM
scenario. Ca2þ binds to a diffusible kinase at rate νa, which
then phosphorylates at rate νp. Ca2þ detaches at rate νd from the
kinase and is lost from the system at rate νl. Arrows indicate
independent processes. (b) Distribution of the estimated position
x̂ of Ca2þ release given by averaging over the locations of the
phosphorylation events and obtained from stochastic simulations.
(c) Illustration of the PKC scenario. The kinase binds to the
membrane at rate νb and unbinds at rate νu. Other parameters
have the same meaning as in (a). (d) Distribution of the estimated
position x̂ of Ca2þ release for the PKC scenario obtained from
stochastic simulations. Parameter values in (b) and (d) are
νa=νp ¼ 10, νd=νp ¼ 100, νl=νp ¼ νu=νp ¼ νb=νp ¼ 1, and
DK ¼ 0.01DC. Space has been scaled with

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DC=νp

p
. Red lines

in (b) and (d) indicate Gaussian fits to the distributions.
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FIG. 2. Parameter dependence of phosphorylation. (a) and
(b) Dependence of the average total number of phosphorylation
events hni≡ Np for the CaM (a) and the PKC scenario (b).
(c)–(f) Dependence of the estimation error as a function of the
detachment rate νd (c), (d) and the loss rate νl (e), (f) in the CaM
(c), (e) and the PKC scenario (d), (f). Symbols are for simulation
results, lines are obtained from the mean-field calculations, see
text. Parameter values are as in Fig. 1 and νl=νp ¼ 100 (∘, blue),
10 (□, red), 1 (�, green), 0.1 (△, black) (a)–(d) and νd=νp ¼ 100
(∘, blue), 10 (□, red), 1 (�, green), 0.1 (△, black) (e), (f). Space
has been scaled with

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DC=νp

p
.
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Although the average number of phosphorylation events
per Ca2þ is an important characteristic of the signal
detection process, it is not directly informative of the
detection accuracy, which only depends on the (spatial)
distribution of phosphorylation events. We define the
error of the estimate to be given by the variance of the
distribution P, l2 ¼ R

dx̂x̂2Pðx̂Þ. It decreases with increas-
ing values of νd for νd ≲ νp and after a possible (weak)
increase saturates, see Figs. 2(c) and 2(d). For large enough
detachment rates, the error is thus robust against changes in
νd. As a function of νl it decreases, see Figs. 2(e) and 2(f).
In the PKC scenario, the distribution of the estimated
position is independent of the values of νb and νu as long as
both are nonzero, because we assume membrane-bound
particles to be immobile.
For a mean-field analysis of the above processes, let pC

and pK be the respective probability distributions of free
Ca2þ and of the Ca2þ-kinase complex in the half space
below the membrane. For the CaM scenario, we then have

∂tpC −DCΔpC ¼ νdpK − νapC − νlpC ð1Þ

∂tpK −DKΔpK ¼ −νdpK þ νapC ð2Þ

with boundary conditions ∂zpCjz¼0 ¼ ∂zpKjz¼0 ¼ 0.
Under the mean-field assumption, the mean number n̂ of
phosphorylation events per unit length [25] is given by

n̂ðxÞ ¼ νp

Z
∞

0

dz
Z

∞

0

dtpKðx; z; tÞ ð3Þ

in the limit t → ∞. Using the initial conditions pKðx; z;
t ¼ 0Þ ¼ 0 and pCðx; z; t ¼ 0Þ ¼ δðxÞδðzÞ, where δ is the
Dirac δ distribution, we can integrate Eqs. (1) and (2) with
respect to t from 0 to ∞, solve them for

R
∞
0 dtpKðx; z; tÞ,

and finally obtain n̂. The error is then

l2
CaM ¼

R
∞
−∞ dxx2n̂ðxÞR
∞
−∞ dxn̂ðxÞ ¼ 2

�
l2
C þ l2

K

�
1þ νa

νl

��
; ð4Þ

where l2
C ≡DC=νl and l2

K ≡DK=νd are the Ca2þ and
kinase diffusion lengths, respectively. This expression
agrees well with the simulation results, see Figs. 2(c)
and 2(e). It is essentially given by the sum of the diffusion
length of Ca2þ and the kinase, where the latter is weighted
by a factor depending on νa and νl. The mean number of
phosphorylation events by a single Ca2þ ion, Np;CaM is

Np;CaM ¼
Z

∞

−∞
dxn̂ðxÞ ¼ νaνp

νlνd
; ð5Þ

which is equal to the exact expression for Np;CaM [26].
Similarly, we can obtain n̂ in the PKC scenario. In that

case, the boundary condition on the kinase current in the
z direction is given by

DK∂zpKðx; z; tÞjz¼0 ¼ νbpKðx; z ¼ 0; tÞ − νupkðx; tÞ; ð6Þ

where pk is the distribution of PKC on the membrane. It is
governed by

∂tpkðx; tÞ ¼ νbpKðx; z ¼ 0; tÞ − νupkðx; tÞ: ð7Þ

The distribution of the mean number of phosphorylation
events is now given by n̂ ¼ νp

R
∞
0 dtpkðx; tÞ and we find

l2
PKC ¼ 1

2
½l2

CaM þ lClK� ð8Þ

Np;PKC ¼ νb
νu

½2l2
PKC þ lClK�−1=2Np;CaM: ð9Þ

Note that in contrast to the CaM scenario, the mean number
of phosphorylation events depends on the diffusion con-
stants DC and DK , because only kinases that make it to the
membrane can phosphorylate. The mean-field result for the
mean number of phosphorylation events by a single Ca2þ
ion, Np;PKC, is exact [26] and Eq. (8) is a good approxi-
mation for the estimation error, see Figs. 2(b), 2(d), and
2(f). Let us point out that l2

PKC < l2
CaM for all parameter

values, supporting that a membrane-binding kinase is better
suited to detect the Ca2þ entry point than a cytosolic kinase.
The differences between the membrane-binding and the

cytosolic kinases as well as the dependence of the estima-
tion error on the detachment and loss rates can be under-
stood qualitatively. For a membrane-binding kinase, only
Ca2þ ions close to the membrane and thus typically also
close to the Ca2þ release site can contribute to target protein
phosphorylation, because ions that are too far away will
detach from the kinase before the latter binds to the
membrane and is activated. In contrast, for a cytosolic
kinase potentially all Ca2þ ions can contribute. Increased
detachment and loss rates νd and νl are expected to decrease
the estimation error, because they reduce the time that a
Ca2þ ion can diffuse (bound to a kinase or not) before it
phosphorylates. This is in agreement with the mean-field
calculations and overall also with the stochastic simu-
lations—only, for νl ≲ 20, the error increases slightly
before saturating.
We now turn to Ca2þ puffs. In Fig. 3, we present the error

as a function of the number NCa of Ca2þ in a puff. It does
not decrease as 1=NCa because not all Ca2þ lead to a
phosphorylation event. Note, that for NCa ≃ 1000 the error
in the PKC scenario is more than a factor 10 smaller
compared to the CaM scenario. In both cases, the error
starts to decrease as soon as NPNCa ≈ 1.
We will now express the estimated error in the meas-

urement performed by a puff through the distribution of
phosphorylation events by one Ca2þ. Let nðξÞ be the
distribution of phosphorylation events resulting from a
puff. A convenient notation for the variance l2

puff of the
estimated position is in form of a path integral
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l2
puff ¼

Z
DnðξÞξ̂2nðξÞP½nðξÞ�; ð10Þ

where P is the probability distribution of the realizations
and ξ̂nðξÞ the estimated position for the distribution nðξÞ.
In the limit, where each Ca2þ ion is resulting in

phosphorylation at one position at most, phosphorylation
at any two different positions results from two different
Ca2þ ions and are thus independent of each other.
Consequently,

P½nðξÞ� ¼ N
Y
ξ

Pðn; ξÞ; ð11Þ

with Pðn; ξÞ being the probability of having n phospho-
rylation events at ξ. We assume it to be given by a
Poissonian distribution with a mean that is equal to the
average phosphorylation profile n̂ðξÞ of the distribution of
phosphorylation events resulting from one Ca2þ ion that
was calculated above. Explicitly,

Pðn; ξÞ ¼ n̂ðξÞn
n!

e−n̂ðξÞ: ð12Þ

After some calculation [26], we find

l2
puff ¼ l2

e−NpNCa

1 − e−NpNCa

X∞
n¼1

Nn
pNn

Ca

n!n
; ð13Þ

where Np and l2 are, respectively, the mean number of
phosphorylation events and the variance of the correspond-
ing distribution resulting from one Ca2þ ion. For large NCa
we have l2

puff ¼ l2=ðNpNCaÞ. The mean-field expression is
in good agreement with the simulation results in the CaM
scenario and can be fitted to the data in case of the PKC
scenario, see Fig. 3.
In conclusion, we have shown that the spatial distribu-

tion of phosphorylation events determines the site of
Ca2þ increase best when the Ca2þ sensitive kinase requires
membrane binding for activation. In this case, position

estimation is optimized if the rate of Ca2þ detachment from
the kinase is comparable to the phosphorylation rate and if
the rate of Ca2þ loss from the system is maximal. We note
that, for PKCα, the Ca2þ detachment rate is about five times
that of the phosphorylation rate [27]. Using experimental
values for the various parameters, DC ≈ 500 μm2=s [28],
DK ≈ 10 μm2=s [29], νp ≈ 2=s, νd ≈ 20=s [27], and νl ≈
40=s [30], we find that the estimation error for PKCα and a
single Ca2þ ion is l2

PKC ≈ 50 μm2. This value decreases
with increasing number of Ca2þ ions in a puff.
In living cells there is always a background of Ca2þ

present, which can compromise the accuracy of the
detection process of a localized stimulus. In presence of
background phosphorylation, the dependence of the error
on parameters can change qualitatively. Notably, an
increase of the Ca2þ detachment rate νd, which often leads
to an increase of the accuracy in absence of background
phosphorylation, see Figs. 2(c) and 2(d), will lead to an
increase of the error in its presence [26]. The implementa-
tion of a threshold, such that only phosphorylation levels
above the one induced by the background lead to a cell
response, could at least partly remedy the detrimental
effects of background phosphorylation. A full discussion
of the effects of background phosphorylation on reading
out localized Ca2þ signals requires probably to consider a
specific cell response.
In future work, it will be interesting to consider aspects

not accounted for in the present analysis. For example,
PKCα needs to bind to DAG for activation and forms
clusters on the cell membrane [31,32]. Also processes that
are further “downstream” of target-protein phosphorylation
like the diffusion of target proteins or actin-filament
polymerization will affect the localization of the cell
response. These studies should probably be restricted to
specific processes, like the growth and maturation of a
dendritic spine into a synapse. Our analysis, however,
presents a general lower bound on the achievable accuracy.

We acknowledge funding through SFB 1027 by
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