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We study the influence of cell-level mechanical heterogeneity in epithelial tissues using a vertex-based
model. Heterogeneity is introduced into the cell shape index (p0) that tunes the stiffness at a single-cell
level. The addition of heterogeneity can always enhance the mechanical rigidity of the epithelial layer by
increasing its shear modulus, hence making it more rigid. There is an excellent scaling collapse of our data
as a function of a single scaling variable fr, which accounts for the overall fraction of rigid cells. We
identify a universal threshold f�r that demarcates fluid versus solid tissues. Furthermore, this rigidity onset
is far below the contact percolation threshold of rigid cells. These results give rise to a separation of rigidity
and contact percolation processes that leads to distinct types of solid states. We also investigate the
influence of heterogeneity on tumor invasion dynamics. There is an overall impedance of invasion as the
tissue becomes more rigid. Invasion can also occur in an intermediate heterogeneous solid state that is
characterized by significant spatial-temporal intermittency.
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Heterogeneity amongst cells in a tumor has been
recognized as one of the hallmarks of cancer [1–4]. This
so-called intratumor heterogeneity is thought to facilitate
metastasis [1,5,6] by allowing a cellular community the
flexibility and efficiency to adapt to new environments [7].
It is also largely responsible for therapeutic resistance
[1,2,8,9]. Cellular differences within a tumor result from
an interplay of both genetic and extrinsic influences [10–14].
Whereas fitness or genotypic heterogeneity has been studied
extensively, the role of mechanical heterogeneity in a tumor
or cellular collective is still not well understood.
Recent experimental evidence [15–18] has revealed that

tumor cells exhibit a broad distribution of various biome-
chanical properties. These include intratumor heterogeneity
in cell stiffnesses [17,19–22], stresses [23], and cell-cell
interactions [21,24]. However, there is no consensus on
how these heterogeneities affect the mechanical behavior at
the tissue level. For example, while biophysical techniques
[25] such as AFM [22] and the optical stretcher [18] show
that individual cancer cells are softer than healthy cells,
there is an apparent paradox with measurements at the tissue
level that tumors are more rigid than healthy tissues [26,27].
From a theoretical or modeling perspective, there is a

lack of understanding of how cell-level heterogeneity
influences the mechanical state of the tissue. One large
class of vertex-based models [28–30] has been used to
study mechanics of homogeneous epithelial tissues which
can exhibit a solid-to-fluid transition [31–39]. However,
previous works often treat heterogeneity as biological noise,
and therefore they are not well suited to model many of the
salient features in tumors.
In this Letter, we study explicitly the effect of hetero-

geneity on the mechanics of the confluent cell monolayer

using the vertex model. Our results show that heterogeneity
always enhances the rigidity of a tissue. The mode of
enhancement depends on the spatial distribution of rigid vs
soft cells, which is directly tuned by a single universal
parameter fr. This results in distinct mechanical regimes
that arise from the mismatch of two percolation processes:
(1) rigidity percolationofmechanical tensions and (2) contact
percolation of rigid cells. We also connect tissue rigidity to
cellular migration using a model for the invasion of a single
metastatic cell in a heterotypic microenvironment of the
tissue. The burstlike intermittency in the heterogeneous solid
state is highly reminiscent of the pulsating cancer cell
migration recently observed in epithelial monolayers [24].
Model.—In the vertex model, a 2D confluent epithelial

tissue is governed by the energy function [28–31,33,40]
E¼P

N
i¼1 ½KAðAi−Ai

0Þ2þKPðPi−Pi
0Þ2�, where cell areas

fAig and perimeters fPig are functionals of the positions
of vertices frig. KA and KP are the area and perimeter
elasticities. The term quadratic in Ai results from resistance
to cell volume changes [29–31]. Changes to cell perimeters
are related to the deformation of the actomyosin cortex
[41,42]. The term KPP2

i corresponds to the energy cost of
deforming the cortex. The linear term, −2KPPi

0Pi, is the
effective line tension by cell i which gives rise to a
“preferred perimeter” Pi

0. The value of Pi
0 emerges from

an interplay of cell-cell adhesion and cortical tension
[29,31,32,43]. Here we assume the preferred cell area A0

does not vary from cell to cell and is set to be the average
area per cell (Ai

0 ¼ Ā). The energy can be nondimension-

alized by choosing KPĀ as the energy unit and
ffiffiffiffī
A

p
as the

length unit
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ε ¼
XN
i¼1

½κAðai − 1Þ2 þ ðpi − pi
0Þ2�; ð1Þ

where ai ¼ Ai=Ā and pi ¼ Pi=
ffiffiffiffī
A

p
are the rescaled area

and perimeter of the ith cell. κA ¼ KAĀ=KP is the rescaled

cell area elasticity, and pi
0 ¼ Pi

0=
ffiffiffiffī
A

p
is the preferred cell

shape index [32].
In this model, the cell stiffness is determined by the

tension τm on cell-cell junctions (edges) [44–50]. For an
edge with length lm, the tension is given by [51,52]

τm ≡ ∂ε
∂lm ¼ ðpi − pi

0Þ þ ðpj − pj
0Þ; ð2Þ

where pi and pj are the rescaled perimeters of cells i, j
adjacent to the edge m. As a result, the cell stiffness is
directly tuned by the preferred cell shape indices. To
capture the experimental heterogeneities in single-cell
stiffnesses and in cell-cell interactions [17,19–22], we
introduce variations in the preferred shape indices fpi

0g.
The majority of this work uses a Gaussian distributed set of
fpi

0g with mean μ and standard deviation σ. The results are
insensitive to the form of distribution for fpi

0g (see the
Supplemental Material (SM) [53]).
To initialize the simulation, Voronoi cells [55,56] are used

to provide a set of initial vertex positions,frig. Then each cell
is assigned a value of pi

0 drawn from a Gaussian distribution
withmeanμ and standarddeviationσ. The set offpi

0g remain
as quenched variables. We use the open-source SURFACE

EVOLVER [57] and a combination of the FIRE and conjugate-
gradient [58,59] algorithms to minimize Eq. (1) under
periodic boundary conditions (see the SM [53] for a sample
script and discussions on the impact of different boundary
conditions with Refs. [60–65]). The network topology is
updated using T1 moves [32,66,67]. This algorithm produ-
ces stable states where the net residual force on vertices is
< 10−10. A range of parameters μ ¼ 3.6–3.95, σ ¼ 0–0.3,
κA, and system sizes N ¼ 36–900 are studied.
Cellular heterogeneity enhances rigidity.—We first

focus on the case where area and perimeter elasticities
are matched in their strengths (κA ¼ 1). In Fig. 1(a), the
shear modulus G (see the SM [53]) is plotted as a function
of μ and σ. At σ ¼ 0, G vanishes at μ ≈ 3.828. This
recapitulates the rigidity transition in the absence of
heterogeneity [29,32,51]. Increasing σ at fixed μ always
enhances the rigidity, which can occur in two different
ways: (i) for a rigid tissue when σ ¼ 0, G always increases
with σ, and (ii) for a fluid tissue, G ¼ 0 when 0 < σ ≤ σ�
but becomes rigid when σ ≥ σ�. The threshold σ� where
rigidity emerges depends on μ. To better understand the
dependence of G on (μ, σ), we first hypothesize that σ
provides an overall scale for the shear modulus and plot
a rescaled G=σ as function of μ for various σ [inset of
Fig. 1(a)]. This yields an intriguing result, where all curves

in the inset of Fig. 1(a) intersect at a common point
μ� ≈ 3.8. The μ� serves as a crossover point between
two distinct regimes. When μ < μ�, G=σ decreases as σ
is increased. For μ ≥ μ�, the behavior is flipped and G=σ
increases with σ. The intersection of all curves also
suggests that closer to μ�, the shear modulus should
converge to a scaling of G ∝ σ. Based on these observa-
tions, we hypothesize that the behavior of G below and
above μ� may be described by a universal scaling relation

G ¼ σg�

�
σ

jμ − μ�j
�
: ð3Þ

We replot all data based on the ansatz [Eq. (3)] in Fig. 1(b).
An excellent scaling collapse is obtained, which allows for
pinpointing of the location of the crossover transition μ� ¼
3.812 separating G=σ into two distinct regimes gþ, g−
where � ¼ sgnðμ − μ�Þ. In Fig. 1(b), all data with μ > μ�
(shown in red) collapse onto the gþ branch. In contrast, data
with μ < μ� (shown in blue) correspond to the g− branch.
The two branches meet at μ ¼ μ�, where G scales linearly
with σ.
The universal scaling near μ� provides insights into the

nature of rigidity. At the crossover μ�, there are 50% of
cells with pi

0 < μ� regardless of the value of σ. Below the
crossover (μ < μ�), cells with pi

0 < μ� exceed 50%, while
above the crossover (μ > μ�) this fraction is below 50%.
This suggests that the fraction of cells with pi

0 < μ� plays
an important role. Therefore we define this fraction as

fr ¼
Z

μ�

−∞
F μ;σðp0Þdp0; ð4Þ

where F is the probability distribution function and for a
Gaussian, fr ¼ ð1=2Þerfc½ðμ − μ�Þ=ð ffiffiffi

2
p

σÞ�. In the inset of
Fig. 1(b), a replot of all data in terms ofG=σ vs fr collapses
to a common curve. Interestingly, the numerical value
p0 ¼ 3.812 was previously found to be the threshold for
rigidity in tissues [32] with homogeneous p0. This uni-
versal scaling behavior supports the idea that pi

0 < μ� can
serve as a single-cell criterion for rigidity and their fraction

(a) (b)

FIG. 1. Tissue mechanical property. (a) Shear modulus G (in
units of KP) vs μ at σ ¼ 0; 0.07; 0.09; 0.11; 0.13; 0.15; 0.17; 0.19;
0.21; 0.23; 0.25; 0.27; 0.29 for N ¼ 400, κA ¼ 1. (Inset) G=σ vs
μ. (b) G=σ vs σ=jμ − μ�j in log-log scale. (Inset) G=σ vs the
fraction of rigid cells fr [defined in Eq. (4)].
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fr determines tissue mechanics. We therefore refer to fr as
the fraction of rigid cells.
Heterogeneity drives two different percolations.—The

emergence of rigidity when a certain population of cells
exceeds a fraction is reminiscent of a percolation process
[68–72]. To test whether fr drives a percolation transition,
we analyze the spatial organization of rigid cells. Snapshots
of connected rigid cells are shown in Fig. 2(a), and the
probability for rigid cells to form a system-spanning
contact network is plotted in Fig. 2(c). Finite-size scaling
[inset of Fig. 2(c)] shows a contact percolation transition
at fcr ¼ 0.475� 0.005 with exponent ν ¼ 1.60� 0.03.
However, according to the inset of Figs. 1(b) and 3(b),
the tissue becomes rigid at a much lower fr ≈ 0.21,
suggesting the contact percolation of rigid cells is not
necessary for rigidity. We then hypothesize that the
percolation of the tension network is necessary for rigidity
rather than rigid-cell contacts. Figure 2(d) shows tension
percolation occurring at f�r ¼ 0.21� 0.01, coinciding with
the rigidity onset. Snapshots of tensions [Fig. 2(b)] high-
light an interesting behavior: e.g., at fr ¼ 0.24, the rigid-
cell contact network does not span the system, yet tensions
form a system-spanning structure. Therefore the presence
of just a few unconnected rigid cells can induce a much
more spatially extended tension network. The distribution

of tensions pðτÞ also evolves as a function of fr in an
unconventional way [Fig. 3(a)]. For values of fr > 0.21
corresponding to rigid states, pðτÞ vanishes as τ → 0 and
appears symmetrical about their mean. At lower fr, pðτÞ
becomes significantly more skewed and heavy tailed (see
the SM [53]) and also develops an excess number of τ ≈ 0
edges. Interestingly, the average tension for the tissue hτi
does not vanish [Fig. 3(b)] even below f�r, and it does not
show drastic changes at f�r . In contrast, G=σ undergoes a
transition at f�r , coinciding with the tension network
percolation. Remarkably, two states with slight differences
in their tensions can differ by several orders of magnitudes
inG (see the SM [53] for snapshots), depending on whether
the tension network is percolated.
We use a simple mean field approach to estimate the

rigidity transition threshold f�r ¼ 0.21. The network shares
a similar topology with randomVoronoi tessellations where
the bond percolation threshold ¼ 0.66 [73–75]. Therefore
if rigidity requires the percolation of edges with finite
tensions, the onset of rigidity should correspond to the time
when there are exactly 66% cell edges with finite tensions.
For each parameter pair (μ, σ), we define the fraction of
finite tensions asNτ ¼

R
∞
τ0
pðτÞdτ, where the threshold τ0 ¼

10−5 is chosen to define “zero” tensions coinciding with the
noise floor in the numerical calculations. In Fig. 3(c), we
show that the point at which Nτðμ; σÞ ¼ 0.66 is consistent
with the rigidity transition, i.e., f�r ¼ 0.21. Taken together,
these results suggest that a rigidity percolation occurs at f�r .
The mechanics of the tissue is summarized in a phase

diagram [Fig. 3(c)]. Solid and fluidlike states are separated
by f�r, which corresponds to a rigidity percolation of the

(c)

(d)

(a)

(b)

FIG. 2. Rigidity and contact percolations do not coincide.
(a) Connected clusters of rigid cells shown in red. White cells
correspond to pi

0 ≥ μ�. (b) Typical snapshots for the tension
network. Edges with finite tensions are indicated by thick black
lines, while other edges have τ ¼ 0. (c) Probability of contact
percolation for rigid cells, Pcontact vs fr. Colors indicate different
tissue sizes in the range N ¼ 36–900 (see the SM [53] for the
method of calculating Pcontact). (Inset) Finite-size scaling yields
a contact percolation threshold of fcr ¼ 0.475� 0.005 and
ν ¼ 1.60� 0.03. (d) Probability to obtain a system-spanning
tension cluster vs fr. Finite-size analysis yields a transition at
f�r ¼ 0.21� 0.01.

(a) (c)

(b)

FIG. 3. Spatial distribution of cellular tensions dictates tissue
rigidity. (a) Distribution of tensions pðτÞ in semilog scale at
κA ¼ 1,N ¼ 400 for various fr. (b)G=σ and τ=σ vs fr in semilog
scale at κA ¼ 1, σ ¼ 0.1, N ¼ 400. G=σ vanishes at f�r ¼ 0.21,
while the tension remains finite even in fluid states. τ has units of

KP

ffiffiffiffī
A

p
, and G has units of KP. (c) A phase diagram in (μ, σ). The

solid black line indicates rigidity percolation and corresponds to
values of μ and σ where fr ¼ f�r . The red line is the mean field
estimate for the bond percolation on a random Voronoi tessella-
tion. The blue dashed line indicates the contact percolation
transition of rigid cells at fcr . The mismatch between rigidity
and contact percolations results in an intermediate “hetero-
geneous solid state” which exists only for σ > 0.
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edge tensions. Contact percolation of rigid cells occurs at
a higher value of fr than the rigidity percolation. The
mismatch between contact and rigidity percolations can be
observed only in the presence of heterogeneity since, at
σ ¼ 0, fr is either 0 or 1. We call the intermediate region
between the two percolation transitions the heterogeneous
solid state. Rigidity transition obtained through the mean
field method is shown as the red line in Fig. 3(c).
Cell area elasticity κA weakens the effect of hetero-

geneity.—Next we focus on the heterogeneous solid state
(f�r < fr < fcr). The regime is characterized by spatial
heterogeneity [Figs. 2(a) and 2(b)], where isolated rigid-
cell and tension clusters exist alongside tissue-spanning
percolated tension networks. Mechanical force balance
must hold at every vertex [51] for a solid tissue.
However, for an isolated tension cluster, edge tensions
alone cannot guarantee force balance, such as a vertex that
sits on the boundary of this cluster. The missing component
required for full force balance is the intracellular pressure
force that acts perpendicularly on an edge given by [51,52]
Πm ¼ κAðai − ajÞ. Here ai and aj are the areas of cells i
and j adjacent to the edge m. Interestingly, since the
pressure depends on the value of the cell area elasticity κA,
the stability of isolated tension clusters must also depend on
κA. To see the effect of cell area elasticity, we repeat the
numerical calculations at various κA values. The depend-
ence of G=σ on fr is plotted for various κA values in
Fig. 4(a). At κA > 0, G=σ suffers a slight dip at fcr but stays
finite all the way until fr below f�r. In general, as long as κA
is finite, the rigidity transition does not shift. The case of
κA ¼ 0 is a singular limit where the rigidity transition shifts
suddenly to fcr to coincide with the contact percolation
transition. This confirms our hypothesis that when cells
cannot exert pressure forces, the tension network can
support mechanical rigidity only when rigid cells physi-
cally come into contact. In contrast, at κA > 0, stable
tensions can be induced between rigid cells that are
separated by a distance. We summarize these results in
Fig. 4(b) and also incorporate the different scaling regimes
for the solid phase when κA > 0. We are able to differentiate

two types of solids: (i) when κA > 0, f�r < fr < fcr , rigidity
is strongly enhanced by heterogeneity [the lower branch in
Fig. 1(b)], and (ii) when κA > 0, fr > fcr , there is only weak
enhancement of rigidity [the upper branch in Fig. 1(b)].
When κA ¼ 0, heterogeneity has no effect.
Heterogeneity and cellular invasion.—We next focus on

the effect of the heterotypic microenvironment on cell
migration. A recent study [76] used a cellular Potts model
to study tumor metastasis when cells are mismatched in
their motility forces. As a complementary approach, here
we use a dynamic vertex model [77,78] to simulate a tissue
where only a single cell is invasive. The invading cell has a
propulsive force v0 along a polarity vector n which
undergoes random rotational diffusion [55,79] at a slow
rate. This mimics the directional motility of a metastatic
cell under the influence of strong chemotactic signals [80].
In the tissue, each vertex ν evolves according to the
overdamped equation of motion with a viscous drag Γ:

Γ
drμ
dt

¼
8<
:

− ∂ϵ
∂rμ þ v0n; vertices of invading cell;

− ∂ϵ
∂rμ for other vertices:

ð5Þ

Equation (5) is simulated with a fixed value v0 ¼ 0.4 and at
various values of fr. The mean total displacement of
the invading cell is plotted as function of fr in Fig. 5(a).
The behavior at fr ¼ 0, 1 recapitulates results in the
absence of heterogeneity [55], where a cell is either moving
(fr ¼ 0) or stuck (fr ¼ 1). However, with heterogeneity
tissues in the range of 0 < fr < 1 become accessible and
cells moving through must interact with rigid as well as soft
neighboring cells along its path of invasion. This results in a
highly intermittent migration dynamics for the invading
cell. To quantify the intermittency, we plot the kurtosis
(defined in the SM [53]) in the displacement of the invading

(a) (b)

FIG. 4. The effect of heterogeneity depends on cell area
elasticity. (a) G=σ vs fr in semilog scale at various κA values.
G has unit of KP. (b) Phase diagram of mechanical property as a
function of fr and κA. The rigidity and contact percolations are
distinct when κA > 0 but coincide at κA ¼ 0. The region of
(κA > 0, f�r < fr < fcr) corresponds to a solid that follows the
lower branch in Fig. 1(b), where the shear modulus is sharply
enhanced by increasing heterogeneity.

(a) (b)

FIG. 5. Heterogeneity and cellular invasion. (a) Analysis of the
time-averaged displacement (in units of

ffiffiffiffī
A

p
) of a single cell

attempting to move through the tissue with constant v0 ¼ 0.4 at
various fr. Blue points represent the mean displacement of the
cell taken over twice the persistence time. Red points represent
the kurtosis of short time displacements indicating a growing
intermittency of the invasion dynamics. (b) Representative traces

of the invading cell velocities in units of KP

ffiffiffiffī
A

p
=Γ. (Top panel)

The fluid phase at fr ¼ 0.14. (Middle panel) The intermediate
solid phase at fr ¼ 0.47. (Bottom panel) The rigid phase when
fr ¼ 0.98.

PHYSICAL REVIEW LETTERS 123, 058101 (2019)

058101-4



cell [81] as a function of fr. The displacement of the
invading cells also shows a burstlike dynamics when the
tissue is in the heterogeneous solid state [Fig. 5(b) and
video in the SM [53] ].
Discussion.—Our work suggests that tissue mechanics

is determined not just by the average softness of the cells
but on the statistical fluctuations in single-cell properties.
The heterogeneity-driven rigidification can provide a pos-
sible resolution of the paradox regarding how soft cells
can give rise to a tumor that is rigid at the tissue level [82].
As a simple example, we note that in the phase diagram
[Fig. 3(c)], it is possible to transform from a fluid to a solid
state by increasing μ (i.e., cells become softer overall) but
at the same time increasing σ. Furthermore, our predictions
show that the tissue mechanics is controlled by a single
fraction fr. This is consistent with a recent experimental
finding [83] that a fraction of mesenchymal cells can serve
as a control parameter in describing jamming properties,
and that increasing mesenchymal fraction increases motil-
ity. There is also experimental evidence that heterogeneity
can drive pulsating cancer cell migration in epithelial
monolayers [24]. The intermittency we have observed in
the dynamics of the invading cell in the heterogeneous solid
state is highly reminiscent of such invasion behavior. With
respect to imaging studies in epithelial sheets, we predict
cell shape metrics (cellular aspect ratios [84] and cell shape
indices [85]) (see the SM [53]) that can be used to
distinguish between different mechanical phases. Tension
profiles of a tissue can be directly obtained by laser-
ablation experiments [44] or inferred from measurements
of myosin concentration on cell edges [86], which can be
compared to our theoretically predicted results. One pos-
sible avenue would be to perform the same percolation
analysis on a tissue’s cellular tension network.
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