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We show that crystal-field calculations for C1 point-group symmetry are possible, and that such
calculations can be performed with sufficient accuracy to have substantial utility for rare-earth based
quantum information applications. In particular, we perform crystal-field fitting for a C1-symmetry site in
167Er3þ∶Y2SiO5. The calculation simultaneously includes site-selective spectroscopic data up to
20 000 cm−1, rotational Zeeman data, and ground- and excited-state hyperfine structure determined from
high-resolution Raman-heterodyne spectroscopy on the 1.5 μm telecom transition. We achieve an
agreement of better than 50 MHz for assigned hyperfine transitions. The success of this analysis opens
the possibility of systematically evaluating the coherence properties, as well as transition energies and
intensities, of any rare-earth ion doped into Y2SiO5.
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Over the last decade, substantial progress has been made
towards realizing practical quantum information processing
hardware using solid-state rare-earth ion based materials.
Key areas of advancement have been optical quantum
memories [1–10], quantum-gate implementations [11,12],
single photon sources [13–15], and microwave-to-optical
photon modulators [16]. To date, one of the host materials
of choice for these applications has been yttrium orthosi-
licate (Y2SiO5). The reason for this is twofold: first, yttrium
has a very small nuclear magnetic moment, while isotopes
of Si and O with nonzero nuclear spin have very low natural
abundances. At cryogenic temperatures, nuclear spin flips
are the primary source of decoherence in rare-earth ion
doped materials, resulting in Y2SiO5 based systems having
outstanding coherence properties. The second reason is that
the rare-earth substitutional site in Y2SiO5 has a C1 point-
group symmetry; this leads to highly admixed wave
functions enabling efficient and diverse optical pumping
schemes [11,17,18].
The formulation of accurate models for the hyperfine

structure of C1 point-group symmetry sites is highly
nontrivial; however, they are an invaluable tool for a
number of practical applications. For example, the avai-
lability of the spin Hamiltonian for 151Eu3þ∶Y2SiO5

allowed for a computational search for magnetic field
orientations exhibiting a near-zero gradient with respect
to hyperfine energy levels. This is the basis of the zero-
first-order-Zeeman (ZEFOZ) technique, which was essen-
tial to the experimental demonstration of a coherence time
of six hours [5]. However, spin Hamiltonian models are
restricted to specific electronic levels of a single ion-host

combination. This results in considerable practical chal-
lenges, especially for the structure of the excited-state
electronic levels, which can often only be probed using
experiments that conflate excited and ground state split-
tings. In this Letter, we avoid the shortcomings of spin
Hamiltonians by developing a method to fit a crystal-field
Hamiltonian for erbium doped Y2SiO5.
Crystal-field methods have been essential to the develop-

ment of rare-earth optical applications, such as phosphors
and lasers [19–21]. However, the lack of symmetry (i.e., C1

symmetry) of rare-earth substitutional sites in Y2SiO5

hindered the application of crystal-field modeling to this
material, despite its ubiquity as a host in quantum-
information applications. Previous work on C1 symmetry
sites was based on ab initio calculations [22,23] or used a
higher-symmetry approximation to reduce the number of
parameters [24,25]. These approaches are not accurate
enough to model the complex magnetic and hyperfine
structure that we consider in this Letter. The key advantage
of a crystal-field model over the spin Hamiltonian approach
is that it is not restricted to a specific electronic level
but predicts the magnetic and hyperfine structure of the
complete 4f configuration. This greatly increases the
predictive power, aids the analysis of excited states, and
also enables fitting to a much wider range of experimental
data. Further, crystal-field modeling enables the rigorous
calculation of radiative transition rates [21,26].
The predictive power of crystal-field models extends

considerably beyond an individual rare-earth ion. For a
fixed host crystal, there exist well established parameter
trends across the rare-earth series [27]. Consequently,
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parameters describing a specific rare-earth dopant can be
extrapolated to previously unstudied rare-earth dopants in
the same host. Moreover, the availability of complete 4f11

wave functions enables several novel applications, such as
studying ZEFOZ points in a large magnetic field, a regime
in which the spin Hamiltonian approach breaks down. A
recent demonstration of coherence times exceeding one
second in 167Er3þ∶Y2SiO5 using a 7 T magnetic field
makes this particularly relevant [7], since, if such an
approach were to be combined with the ZEFOZ technique,
an accurate model at large field would be imperative.
In this Letter, we report a phenomenological crystal-field

fit for one of the C1 symmetry sites of 167Er3þ∶Y2SiO5.
Physical properties, such as a transitions in the 1.5 μm
telecommunications band and an optical homogeneous
linewidth of 50 Hz [28] make this one of the most
promising materials for rare-earth based quantum informa-
tion applications. Despite extensive past characterization
[22,29–35], an accurate model of the excited state hyper-
fine structure remains an outstanding problem. This
material is, therefore, an important test case for crystal-
field fitting to substitutional sites without symmetry. To
achieve a unique fit, both site-selective optical as well as
Zeeman and hyperfine data were required [36], which were
available from the literature [22,34,35]. This was comple-
mented with targeted Raman-heterodyne measurements to
obtain high-precision hyperfine splittings of the ground and
4I13=2Y1 excited states.
Y2SiO5 is a monoclinic crystal with C6

2h space group
symmetry. The yttrium ions occupy two crystallographi-
cally distinct sites, each with C1 point-group symmetry,
referred to as site 1 and site 2 [37]. Because of the
wavelength tuning range of our laser, this work is focused
on site 1. Y2SiO5 has three perpendicular optical-extinction
axes: the crystallographic b axis, and two mutually
perpendicular axes labeled D1 and D2. We follow the
convention of identifying these axes as z, x, and y,
respectively [34].
The complete Hamiltonian appropriate for modeling the

4fn configuration reads

H ¼ HFI þHCF þHZ þHHF þHQ: ð1Þ

The terms in the above equation represent the following
interactions: the free-ion (FI) contribution, the crystal-field
(CF) interaction, the Zeeman term, the nuclear magnetic
dipole hyperfine (HF) interaction, and the nuclear quadru-
pole interaction. We use the usual free-ion Hamiltonian
with the following parameters: E0 accounting for a constant
configurational shift, Fk, the Slater parameters character-
izing aspherical electrostatic repulsion, and ζ, the spin-orbit
coupling constant. Furthermore, we also include terms
that parametrize two- and three-body interactions as well
as higher-order spin-dependent effects; for a more detai-
led description, the reader is referred to the review by

Liu [38]. The most general crystal-field Hamiltonian has
the form

HCF ¼
X

k;q

Bk
qC

ðkÞ
q ; ð2Þ

for k ¼ 2, 4, 6 and q ¼ −k � � � k. The Bk
q parameters are the

crystal-field expansion coefficients, and CðkÞ
q are spherical

tensor operators using Wybourne’s normalization [39]. We
write nonaxial (q ≠ 0) Bk

q parameters as complex numbers.
In this convention, the �q parameters are related by
ðBk

qÞ� ¼ ð−1ÞqBk
−q [40,41]. For the remaining terms in

Eq. (1) we note that HHF and HQ, respectively, contain
coupling constants A and Q that must be determined from
experiment, whileHZ has no free parameters. For a detailed
description of these terms, and the evaluation of their
matrix elements, the reader is referred to Refs. [24,42].
High precision magnetic and hyperfine interactions are

generally expressed using the spin Hamiltonian (SH)
formalism [43]. For a Kramers ion with nonzero nuclear
spin, this Hamiltonian has the form [44]

H ¼ βeB · g · Sþ I · A · Sþ I · Q · I − βngnB · I; ð3Þ
where βe is the Bohr magneton, B is an external field
vector, g is the g tensor, A is the hyperfine tensor, and Q is
the electric-quadrupole tensor. Further, S and I are vectors
of electronic and nuclear spin operators, respectively. βn
and gn are the nuclear magneton and nuclear g factors,
respectively. For the magnetic field values considered here,
the nuclear Zeeman interaction is less than 2 MHz, and
since the uncertainty of A and Q is Oð20 MHzÞ [35] this
interaction is neglected.
For the initial phase of our fitting, we use a projection

from the crystal-field Hamiltonian to the spin Hamiltonian,
so that we can fit to spin-Hamiltonian parameters. This
projection has the form

ASH ¼ V†AV; ð4Þ
for operator A and spin Hamiltonian effective operator ASH.
Here, V are the eigenvectors one obtains by diagonalizing
HFI þHCF, which can be interpreted as the zero order
contribution to the spin Hamiltonian.
For C1 symmetry, this projection has some subtleties;

specifically, there is a phase freedom in the matrix elements
of S and I in Eq. (3). This phase freedom does not affect the
eigenvalue spectrum of the spin Hamiltonian; nevertheless,
a specific orientation is required in order for the parameter
tensors to be symmetric. When one determines spin
Hamiltonian parameter matrices from experimental data,
this issue is avoided, for by choosing symmetric parameter
matrices during the fitting, one implicitly fixes the phase to
an appropriate value. However, when one performs the
projection (4), the value of this phase does not necessarily
correspond to a symmetric parameter tensor. We mitigate
this by employing a singular-value decomposition to trans-
form the spin Hamiltonian tensors to a basis in which they
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are always symmetric. For our calculations, this phase was
identically zero for matrix elements of I, and therefore, we
only discuss matrix elements of S. We consider, as an
example, the Zeeman interaction term. Given the unitary
matrices U and V and the diagonal matrix Σ, the singular
value decomposition of g takes the form

g ¼ UΣV†: ð5Þ
Consequently, U†gV is diagonal, and performing a sim-
ilarity transformation with the unitary matrix U, we obtain
the symmetric tensor

UU†gVU† ¼ gVU†: ð6Þ

Thus, we can define a transformed set of electronic spin
operators S0 ¼ RS with R ¼ VU†, leading to an SU(2)
transformed spin Hamiltonian term of the form B · g0 · S0,
with g0 ¼ gVU† symmetric. An analogous procedure can
be applied to the nuclear dipole interaction term I · A · S.
The crystal-field fit was performed in two phases: an

initial coarse fitting which excluded high-resolution
Raman-heterodyne data, and a second polishing phase
where hyperfine transition data were iteratively added.
The initial fitting employed site-selective excitation and
fluorescence data from Doualan et al. [22], while simulta-
neously including the g tensor of the 4I13=2Y1 level reported
by Sun et al. [34], as well as the complete ground-state spin
Hamiltonian reported by Chen et al. [35]. The site-selective
data was, as usual in crystal-field calculations, directly fit
to the eigenvalues of Eq. (1). In order to simultaneously fit
to spin Hamiltonian data, the projection (4) was utilized to
obtain a theoretical set of parameter matrices which could
be fitted to their experimental counterparts.
This procedure yielded a set of parameters of sufficient

accuracy to identify several 4I13=2 hyperfine transitions in
our Raman-heterodyne data and, thus, complete the coarse
step of the fitting. In order to perform the polishing stage,
the projection (4) was abandoned, and instead, the
Hamiltonian (1) was evaluated for a range of magnetic
field values to directly obtain eigenvalues describing both
the hyperfine structure as well as the site-selective data.
This has the advantage that Raman-heterodyne data could
be added step-by-step as transitions were identified. In
order to ease the computational burden, the calculations of
hyperfine states were performed using a truncated basis
using the intermediate-coupling method described by
Carnall et al. [27]. All software used to perform these
calculations is available from [45].
Raman-heterodyne spectroscopy was performed for two

separate frequency regions. Between 0 and 100 MHz,
we use a radio frequency coil, and between 600 and
1200 MHz, a tunable aluminium single-loop single-gap
resonator was used. Samples were cooled using a home
built cryostat (containing a Cryomech PT405 pulsetube
cooler) with an HTS-100 Ltd. superconducting vector

magnet to provide an arbitrarily-oriented magnetic field.
The light source was a Koheras AdjustiK E15 fiber laser,
operating at 1536.48 nm on resonance with the 4I15=2 →
4I13=2 transition of site 1. The sample was an isotopically
purified 167Er3þ∶Y2SiO5 crystal (Scientific Materials Inc.)
with 167Er3þ substituted for Y3þ ions at a 50 ppm level. For
a more detailed description of Raman-heterodyne spec-
troscopy, as well as the experimental setup and methods,
the reader is referred to Ref. [46], which employed the same
Raman-heterodyne setup to identify transitions with long
spin-coherence times.
Figure 1 shows the hyperfine transitions of both the

ground and excited states with resonances in the 600–
1200 MHz region with respect to a small change in
magnetic field along the D2 axis. These measurements
are for site 1 of 167Er3þ∶Y2SiO5. Most transitions were
studied in further detail using higher resolution scans over
restricted subfrequencies to provide detailed curvatures for
comparison with our model. Furthermore, low frequency
data at 85 MHz included curvatures with respect to an
external field along the D1, D2, and b axes. The maximum
deviation of any Raman-heterodyne transition that we
directly fit to was 15 MHz. For a few transitions the
assignments remained ambiguous due to the closely spaced
spectral lines. The maximum difference between an
observed transition and its theoretical prediction was
50 MHz, approximately 1% of the span of the hyperfine
levels. We note that, using our final transition assignments,
the coarse fitting predicted 4I13=2Y1 transition frequencies to
within ∼200 MHz of their measured values. Thus, while
using only ground-state hyperfine data enabled the

(a) (b)

FIG. 1. (a) Raman-heterodyne data (black markers) showing
hyperfine transitions of the first levels of both the 4I15=2 and 4I13=2
multiplets of site 1 in Er3þ∶Y2SiO5, superimposed with pre-
dictions from our crystal-field model. The magnetic field was
varied in the direction of the D2 axis. (b) A Raman-heterodyne
scan of this region; the color map uses a linear scale of arbitrary
intensity with yellow or green indicating a resonance condition.
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prediction of excited-state hyperfine transitions with rea-
sonable accuracy, further fitting was required to obtain an
optimal model.
Given that similar ground-state data is available for

crystallographic site 2 of 167Er3þ∶Y2SiO5 [35], a model
with comparable accuracy to the coarse fitting presented
here should, in principle, be possible; however, such an
analysis is beyond the scope of this work.
In Fig. 2, we show the spread of electronic data for

energies up to 20 000 cm−1 and include detailed magnetic
rotation data of the transition between the lowest 4I13=2 level
and the ground state, with splittings on the order of
200 GHz [34]. In Table I, we present the complete set
of parameters determined from our calculation. We note
that, since the Zeeman and hyperfine splittings are much
smaller in magnitude and are determined with higher
accuracy than the crystal-field level energies, they were
given more weight in the parameter fit.
The parameter uncertainties shown in Tab. I were

estimated using the Markov chain Monte Carlo technique.
In the Supplemental Material [47], which includes
Refs. [48–51], we provide a more detailed description of
the fitting procedure. We also include all predicted crystal-
field level energies up to 2H11=2 for a direct comparison
with experimental values from Ref. [22]. Furthermore, the
Raman-heterodyne data for the 0–120 MHz frequency
window is presented and plotted together with the corre-
sponding theoretical transition energies. The Zeeman and
hyperfine tensors for both the Z1 and Y1 electronic levels
are tabulated in the Supplemental Material [47].

In the crystal-field analysis, 34 parameters (five free-ion
parameters, 27 crystal-field parameters, and two hyperfine
parameters) are fitted to 95 data points (enumerated in the
Supplemental Material [47]). By comparison, two separate
spin Hamiltonians, requiring, in total, 34 parameters, would
be required for a conventional analysis of the two states.
The advantage of our approach is that a fit to the ground
state hyperfine data yields a prediction of the excited state
hyperfine structure. This enables simultaneous fitting to
both ground and excited state data to obtain a high-
precision 4f11 Hamiltonian.
In conclusion, we have demonstrated a crystal-field fit

for a rare-earth substitutional site with no symmetry. This
enabled us to accurately characterize the hyperfine structure
of the ground state and all excited state levels of
167Er3þ∶Y2SiO5, allowing modeling of optical pumping
schemes via the 1.5 μm (or other) transitions, as well as
high-field ZEFOZ applications. With suitable scaling, the
crystal-field parameters are also applicable to other ions in
Y2SiO5, opening the possibility of identifying promising
transitions prior to extensive experimental investigation.

The authors wish to acknowledge the use of New
Zealand eScience Infrastructure (NeSI) high performance
computing facilities as part of this research and financial

(a) (b)

(c)

FIG. 2. (a) Experimental and simulated crystal-field level
splittings up to 2H11=2 for site 1 of Er3þ∶Y2SiO5; experimental
values are from Doualan et al. [22]. (b) and (c) Rotation patterns
for optical transitions between 4I15=2Z1 and 4I13=2Y1. Circles
denote the predictions using g-tensor data from Sun et al. [34],
while the solid lines correspond to our crystal-field model.
The magnetic field magnitude used was 0.484 T, and the labels
D2 − b and b −D1 indicate the rotation planes using the standard
orthogonal axes notation for Y2SiO5.

TABLE I. Fitted values for the free-ion and crystal-field
parameters for site 1 of Er3þ∶Y2SiO5. The Judd and Tree’s
parameters, which are not included here, were fixed to the values
obtained for Er3þ∶LaF3 by Carnall et al. [27].

Parameter Fitted value (cm−1) Uncertainty (cm−1)

E0 35 503.5 19.8
ζ 2362.9 1.8
F2 96 029.6 183.7
F4 67 670.6 223.2
F6 53 167.1 263.7
B2
0 −149.8 5.4

B2
1 420.6þ 396.0i 3.1þ 1.3i

B2
2 −228.5þ 27.6i 1.8þ 3.4i

B4
0 1131.2 30.4

B4
1 985.7þ 34.2i 7.0þ 6.7i

B4
2 296.8þ 145.0i 9.0þ 4.1i

B4
3 −402.3 − 381.7i 9.7þ 8.9i

B4
4 −282.3þ 1114.3i 13.4þ 12.0i

B6
0 −263.2 3.1

B6
1 111.9þ 222.9i 1.5þ 3.9i

B6
2 124.7þ 195.9i 2.1þ 3.8i

B6
3 −97.9þ 139.7i 5.1þ 9.7i

B6
4 −93.7 − 145.0i 4.1þ 3.0i

B6
5 13.9þ 109.5i 2.0þ 6.1i

B6
6 3.0 − 108.6i 8.6þ 2.4i

A 0.005 466 0.000 003
Q 0.0716 0.0003
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Gouët, O. Guillot-Noël, and P. Goldner, Phys. Rev. B 81,
144303 (2010).

[32] B. Lauritzen, S. R. Hastings-Simon, H. de Riedmatten,
M. Afzelius, and N. Gisin, Phys. Rev. A 78, 043402 (2008).

[33] R. P. Budoyo, K. Kakuyanagi, H. Toida, Y. Matsuzaki, W. J.
Munro, H. Yamaguchi, and S. Saito, Phys. Rev. Mater. 2,
011403 (2018).

[34] Y. Sun, T. Böttger, C. W. Thiel, and R. L. Cone, Phys. Rev.
B 77, 085124 (2008).

[35] Y.-H. Chen, X. Fernandez-Gonzalvo, S. P. Horvath, J. V.
Rakonjac, and J. J. Longdell, Phys. Rev. B 97, 024419
(2018).

[36] S. P. Horvath, J.-P. R. Wells, M. F. Reid, M. Yamaga, and M.
Honda, J. Phys. Condens. Matter 31, 015501 (2019).

[37] B. Maksimov, V. Ilyukhin, Y. A. Kharitonov, and N. Belov,
Sov. Phys. Crystallogr. 15, 806 (1971).

[38] G. Liu, in Spectroscopic Properties of Rare Earths in
Optical Materials, edited by G. Liu and B. Jacquier
(Springer Science & Business Media, Berlin, 2006).

[39] B. G. Wybourne, Spectroscopic Properties of Rare Earths
(Interscience Publishers, New York, 1965).

[40] D. J. Newman and B. Ng, Rep. Prog. Phys. 52, 699 (1989).
[41] D. J. Newman and B. Ng, Crystal Field Handbook

(Cambridge University Press, Cambridge, England, 2007).
[42] D. P. McLeod and M. F. Reid, J. Alloys Compd. 250, 302

(1997).
[43] R. M. Macfarlane and R. M. Shelby, in Spectroscopy of

Solids Containing Rare Earth Ions, edited by A. A.
Kaplyanskii and R. M. Macfarlane (North-Holland,
Amsterdam, 1987).

PHYSICAL REVIEW LETTERS 123, 057401 (2019)

057401-5

https://doi.org/10.1038/nature07607
https://doi.org/10.1038/nature09081
https://doi.org/10.1038/nature09081
https://doi.org/10.1103/PhysRevLett.114.230502
https://doi.org/10.1103/PhysRevLett.114.230502
https://doi.org/10.1103/PhysRevLett.114.230501
https://doi.org/10.1038/nature14025
https://doi.org/10.1126/science.aan5959
https://doi.org/10.1038/nphys4254
https://doi.org/10.1103/PhysRevLett.104.080502
https://doi.org/10.1103/PhysRevLett.104.080502
https://doi.org/10.1103/PhysRevLett.118.210501
https://doi.org/10.1103/PhysRevX.7.021028
https://doi.org/10.1103/PhysRevX.7.021028
https://doi.org/10.1103/PhysRevA.69.032307
https://doi.org/10.1103/PhysRevA.69.032307
https://doi.org/10.1103/PhysRevA.77.022307
https://doi.org/10.1038/ncomms2034
https://doi.org/10.1038/ncomms2034
https://doi.org/10.1038/ncomms4627
https://doi.org/10.1038/ncomms4627
https://doi.org/10.1103/PhysRevLett.120.243601
https://doi.org/10.1103/PhysRevA.92.062313
https://doi.org/10.1103/PhysRevA.71.062328
https://doi.org/10.1103/PhysRevA.78.043402
https://doi.org/10.1103/PhysRevA.78.043402
https://doi.org/10.1109/JQE.1971.1076623
https://doi.org/10.1088/0953-8984/7/26/017
https://doi.org/10.1088/0953-8984/7/26/017
https://doi.org/10.1021/jp5050207
https://doi.org/10.1016/j.jlumin.2009.12.023
https://doi.org/10.1016/j.jmr.2018.07.018
https://doi.org/10.1063/1.455853
https://doi.org/10.1016/S0022-2313(02)00281-8
https://doi.org/10.1103/PhysRevB.73.075101
https://doi.org/10.1103/PhysRevB.73.075101
https://doi.org/10.1103/PhysRevB.77.155125
https://doi.org/10.1103/PhysRevB.77.155125
https://doi.org/10.1103/PhysRevB.81.144303
https://doi.org/10.1103/PhysRevB.81.144303
https://doi.org/10.1103/PhysRevA.78.043402
https://doi.org/10.1103/PhysRevMaterials.2.011403
https://doi.org/10.1103/PhysRevMaterials.2.011403
https://doi.org/10.1103/PhysRevB.77.085124
https://doi.org/10.1103/PhysRevB.77.085124
https://doi.org/10.1103/PhysRevB.97.024419
https://doi.org/10.1103/PhysRevB.97.024419
https://doi.org/10.1088/1361-648X/aaee5c
https://doi.org/10.1088/0034-4885/52/6/002
https://doi.org/10.1016/S0925-8388(96)02541-8
https://doi.org/10.1016/S0925-8388(96)02541-8


[44] A. Abragam and B. Bleaney, Electron Paramagnetic Reso-
nance of Transition Ions (Clarendon Press, Oxford, 1970).

[45] S. P. Horvath, The pycf crystal-field theory package, https://
bitbucket.org/sebastianhorvath/pycf.

[46] J. V. Rakonjac, Y.-H. Chen, S. P. Horvath, and J. J. Longdell,
arXiv:1802.03862.

[47] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.123.057401 for
4I13=2Y1 spin Hamiltonian parameters, crystal-field level
predictions up to the 2H11=2 multiplet, and a detailed
description of the crystal-field fitting procedure.

[48] D. J. Wales and J. P. K. Doye, J. Phys. Chem. A 101, 5111
(1997).

[49] T. H. Rowan, Ph.D. thesis, University of Texas at Austin,
1990.

[50] S. G. Johnson, The NLopt nonlinear-optimization package,
http://ab-initio.mit.edu/nlopt.

[51] R. C. Aster, B. Borchers, and C. H. Thurber, Parameter
Estimation and Inverse Problems (Academic Press,
New York, 2011), Vol. 90.

PHYSICAL REVIEW LETTERS 123, 057401 (2019)

057401-6

https://bitbucket.org/sebastianhorvath/pycf
https://bitbucket.org/sebastianhorvath/pycf
https://bitbucket.org/sebastianhorvath/pycf
http://arXiv.org/abs/1802.03862
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.057401
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.057401
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.057401
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.057401
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.057401
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.057401
http://link.aps.org/supplemental/10.1103/PhysRevLett.123.057401
https://doi.org/10.1021/jp970984n
https://doi.org/10.1021/jp970984n
http://ab-initio.mit.edu/nlopt
http://ab-initio.mit.edu/nlopt
http://ab-initio.mit.edu/nlopt

