
 

Vison Crystals in an Extended Kitaev Model on the Honeycomb Lattice

Shang-Shun Zhang,1 Zhentao Wang,1 Gábor B. Halász,2 and Cristian D. Batista1,3
1Department of Physics and Astronomy, The University of Tennessee, Knoxville, Tennessee 37996, USA

2Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
3Neutron Scattering Division and Shull-Wollan Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA

(Received 6 March 2019; published 31 July 2019)

We introduce an extension of the Kitaev honeycomb model by including four-spin interactions that
preserve the local gauge structure and, hence, the integrability of the original model. The extended model
has a rich phase diagram containing five distinct vison crystals, as well as a symmetric π-flux spin liquid
with a Fermi surface of Majorana fermions and a sequence of Lifshitz transitions. We discuss possible
experimental signatures and, in particular, present finite-temperature Monte Carlo calculations of the
specific heat and the static vison structure factor. We argue that our extended model emerges naturally from
generic perturbations to the Kitaev honeycomb model.
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Introduction.—The famous Kitaev model on the honey-
comb lattice [1] is an exactly solvable yet experimentally
realistic model of a quantum spin liquid. In contrast to more
conventional magnetic phases, quantum spin liquids retain
extensive (quantum) fluctuations all the way down to zero
temperature [2], where the spins appear to fractionalize into
deconfined “spinon” quasiparticles coupled to appropriate
gauge fields [3].
The Kitaev model is approximately realized in a family

of strongly spin-orbit-coupled honeycomb materials, where
its anisotropic spin interactions emerge between effective
J ¼ 1=2 angular momenta in the t2g orbitals of 4d or 5d
ions [4–7]. To determine the most accurate microscopic
spin models for these Kitaev materials, including
ðNa;LiÞ2IrO3 [8–16] and α-RuCl3 [17–30], various exten-
sions of the Kitaev model have been considered and
analyzed with a wide range of techniques [31–51].
While these models are experimentally realistic and have
rich phase diagrams in the classical limit, it is challenging
to identify and characterize quantum phases in them. For a
start, the honeycomb lattice may harbor many different
quantum spin liquids [52,53], and the Kitaev spin liquid,
captured by the Kitaev model, is only one among these
many candidates. In addition, a quantum spin liquid may
also remain “hidden” by appearing on top of classical
symmetry-breaking order [54].
From a more phenomenological point of view, the low-

energy physics of the Kitaev spin liquid is described by
Majorana fermions (spinons) with Dirac nodes, coupled to
an emergent Z2 gauge field [1]. At each plaquette of the
honeycomb lattice, the Z2 gauge field may form a π flux,
corresponding to a “vison” excitation. In turn, the presence
of such a vison affects the kinetic energy of the spinons via
the Berry phase π picked up by each spinon moving around
it. For the pure Kitaev model, the spinons are governed by a

nearest-neighbor hopping problem (cf. electrons in
graphene), and, due to the lack of frustration, the ground
state has no visons at any plaquettes [1,55]. However, if
the hopping problem is frustrated by competing hopping
amplitudes, the presence of a vison may reduce the
frustration and, thus, lower the kinetic energy of the
spinons. Such a frustration in the hopping amplitudes is
known to stabilize crystals of topological solitons, such as
baby skyrmions or merons, in itinerant magnets [56–58],
and one may thus expect it to stabilize analogous vison
crystals in the Kitaev spin liquid.
In this Letter, we extend the Kitaev model by including

four-spin interactions that preserve the exact solution of the
model and emerge naturally from generic perturbations. By
introducing frustrated further-neighbor hopping for the
Majorana fermions, these additional interactions stabilize
a rich variety of vison crystals, as well as a symmetric
π-flux spin liquid with a vison at every plaquette. Interesti-
ngly, the π-flux spin liquid exhibits a Fermi surface of
Majorana fermions undergoing two subsequent Lifshitz
transitions. On a technical level, we first use a simple
variational treatment to compute the zero-temperature
phase diagram of our extended model. The validity of this
approach is then confirmed by unbiased Monte Carlo (MC)
simulations that also reveal the finite melting temperatures
of the vison crystals.
Model.—We consider a generalized Kitaev Hamiltonian

on the honeycomb lattice:

H ¼ HK1
þHK3

; ð1Þ

where HK1
¼ −K1

P
hijiα σ

α
i σ

α
j is the usual [1] isotropic

Kitaev Hamiltonian with ferromagnetic (K1 > 0) Ising
interactions between the spin components σα along each
α ¼ fx; y; zg bond hijiα [see Fig. 1(a)] and
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HK3
¼ K3

X

hijkliαβγ
σαi σ

γ
jσ

α
kσ

γ
l − K0

3

X

hijkliαβα
σαi σ

γ
jσ

γ
kσ

α
l ; ð2Þ

where ðαβγÞ is a permutation of ðxyzÞ in each term and
hijkliαβγ is a path of length 3 consisting of bonds hijiα,
hjkiβ, and hkliγ . Each term in HK3

is the product of the
three terms inHK1

that correspond to the three bonds along
the appropriate path. Different K3 and K0

3 terms are related
by space-group symmetries, simultaneously transforming
the lattice and the spins; particular examples of their
respective paths, with ðαβγÞ ¼ ðyzxÞ, are depicted in
Figs. 1(b) and 1(c). We remark that, for each path
hijkliαβγ going around one “half” of a hexagon, connecting
opposite vertices i and l, there is a symmetry-related path
hlk0j0iiαβγ ¼ hij0k0liγβα going around the other half of the
hexagon [see Fig. 1(b)].
Importantly, the exact solution ofHK1

[1] is preserved by
the additional terms in Eq. (2). Indeed, since H commutes
with the flux operator Wp ¼ σx1σ

y
2σ

z
3σ

x
4σ

y
5σ

z
6 at each pla-

quette p [see Fig. 1(a)], one can identify static Z2 flux or
vison degrees of freedom at these plaquettes, each being
present (absent) if the corresponding Wp takes eigenvalue
−1 (þ1). Following the Majorana fermionization
σαj ¼ ibαj cj, the Hamiltonian takes the form [60]

H ¼ iK1

X

hijiα
uαijcicj þ iK3

X

hijkliαβγ
uαiju

β
kju

γ
klcicl

þ iK0
3

X

hijkliαβα
uαiju

β
kju

α
klcicl; ð3Þ

where uαij ¼ −uαji ≡ ibαi b
α
j is a Z2 gauge field along the α

bond hijiα. Since these gauge fields are conserved quan-
tities, uαij ¼ �1, providing a redundant description of the
conserved gauge fluxes, Wp ¼ uz12u

x
32u

y
34u

z
54u

x
56u

y
16 ¼ �1,

Eq. (3) is quadratic in the Majorana fermions ci, thus giving
rise to free fermion (“spinon”) excitations after a straight-
forward diagonalization [60]. From the perspective of the
Majorana fermions, the K1 terms describe first-neighbor
hopping, while the additional K3 and K0

3 terms describe
third-neighbor hopping [59].
In analogy with how three-spin interactions may be

obtained from a Zeeman field [1], the four-spin interactions
in Eq. (2) can, in principle, be generated by a perturbative
treatment of Heisenberg and/or symmetric off-diagonal (Γ)
interactions on top of the pure Kitaev model. Taking a more
universal approach and considering Eq. (3) as an effective
low-energy theory for the Majorana fermions [61], we
know that generic time-reversal-symmetric perturbations to
HK1

must generate all Majorana terms that are consistent
with the projective symmetries of the Kitaev spin liquid
[53]. Given that all interaction terms are irrelevant and
second-neighbor hopping terms are forbidden by time
reversal, Eq. (3) is the most natural effective theory beyond
the pure Kitaev model.
Phase diagram.—The ground state of HK1

belongs to
the zero-flux sector, characterized by Wp ¼ þ1 for all p
[1,55]. In the presence of the additional interactions,
however, the ground state may belong to a wide range
of different flux sectors, as shown by the T ¼ 0 phase
diagram in Fig. 2. This phase diagram is obtained from a
simple variational analysis, by comparing the energies of
the seven flux sectors appearing in the diagram on finite
lattices of 48 × 48 unit cells [62]. Furthermore, it is fully
consistent with unbiased finite-temperature MC simula-
tions, discussed in a later section [63].
We first concentrate on the two fully symmetric non-

crystal phases occupying most of the phase diagram: the

(b) (c)(a)

FIG. 1. Extended Kitaev model. (a) Honeycomb lattice with two
sublattices A and B (black and white dots), three bond types x, y,
and z (red, green, and blue bonds, respectively), and the site-
labeling convention around a plaquette p. (b),(c) Representative
(orange) paths hijkliyzx (b) and hijkliyzy (c) associated with the
K3 and K0

3 terms in Eq. (2), respectively; four-spin interactions
along such paths give rise to Majorana hopping from any site i
to all its third neighbors [59], as indicated by the dashed arrows.
For the path hijkliyzx (b), the symmetry-related path hij0k0lixzy is
marked by blue.
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FIG. 2. Phase diagram of the extended Kitaev model. Flux
configurations of distinct vison crystals (colored phases) are
depicted in separate panels; the presence (absence) of a flux is
marked at each plaquette by gray (white) filling.
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zero-flux phase, which has no fluxes at any plaquettes, and
the π-flux phase, which has a Z2 flux at each plaquette. For
K3 ¼ K0

3 ¼ 0, the creation of each Z2 flux with Wp ¼ −1
costs a finite energy Δ ≈ 0.15K1, and the ground state thus
belongs to the zero-flux sector. For K3=K1 > 0, the K1 and
K3 terms in Eq. (3) give rise to a frustrated Majorana
hopping and, hence, an increase in the ground-state energy.
However, due to the two paths between any two opposite
sites i and l around a plaquette p [see Fig. 1(b)], there are
two equivalent hopping terms ∝ iK3cicl in Eq. (3), which
interfere constructively for Wp ¼ þ1 and destructively for
Wp ¼ −1. Consequently, as K3=K1 is increased, fluxes are
effective in relieving frustration from the Majorana hopping
and, thus, become energetically favorable. Since the effec-
tive interaction between nearby fluxes is attractive for small
K0

3=K1 [1], the corresponding phase transition between the
zero-flux and the π-flux phases is strongly first order.
Increasing K0

3=K1, one can modify this interaction and
stabilize various intermediate phases with nontrivial flux
configurations. Indeed, there are five distinct translation-
symmetry-breaking vison-crystal phases in Fig. 2, with
their ordering wave vectors Q corresponding to either the K
point or theM point(s) of the Brillouin zone (BZ). The two
Q ¼ QK crystals have supercells of three plaquettes, con-
taining one vison (“1=3 flux crystal”) and two visons (“2=3
flux crystal”), respectively. Since there are three differentM
points, Q ¼ QM crystals can exhibit single-Q or multi-Q
ordering. The single-Q crystal is a stripy configuration,
corresponding to a supercell of two plaquettes containing
one vison (“1=2 flux crystal”), while the two triple-Q
crystals have supercells of four plaquettes, containing one
vison (“1=4 flux crystal”) and three visons (“3=4 flux
crystal”), respectively.
Majorana problems.—For the different ground-state

flux sectors discussed above, distinct configurations of
the gauge fields uαij ¼ �1 lead to different Majorana
Hamiltonians in Eq. (3). Consequently, each phase in
Fig. 2 has its own Majorana band dispersion and a
corresponding density of states. The low-energy physics,
giving rise to universal signatures in experiments, is
determined by the nodal structures of the Majorana
fermions. For the zero-flux phase, including the pure
Kitaev model, as well as for the 1=4 and 3=4 flux crystals,
the Majorana fermions are gapless at Dirac points and, thus,
have a linear density of states at low energies. For the 1=3
and 1=2 flux crystals, the Majorana fermions are fully
gapped and, thus, have zero density of states below the
energy gap. For the 2=3 flux crystal, there are two
disconnected phases where the Majorana fermions are
gapless at Dirac points and fully gapped, respectively
(see Fig. 2).
Interestingly, the Majorana fermions have more complex

nodal structures in the π-flux phase. This phase is amenable
to a full analytic understanding, as, due to the perfect
cancelation of all K3 terms in Eq. (3), the Majorana

problem has only one dimensionless parameter ratio
κ ≡ K0

3=K1. With a simple calculation [60], we find that
there are, in fact, three distinct π-flux phases characterized
by different Majorana nodal structures.
In particular, there is a π-flux phase where the Majorana

fermions are gapless at Dirac points only and another two
π-flux phases where these Dirac points coexist with Fermi
surfaces (i.e., nodal lines) of distinct topologies (see Fig. 3).
The dashed lines in Fig. 2 indicate two subsequent Lifshitz
transitions [64] separating these three phases as a function
of increasing κ. For κ < 1=5, the only nodal structures are
Dirac points. At the first Lifshitz transition, κ ¼ 1=5, small
pockets of Fermi surfaces appear around these Dirac points
and gradually expand as κ is further increased. At the
second Lifshitz transition, κ ¼ ð ffiffiffi

2
p

− 1Þ=2 ≈ 0.207, these
small pockets then connect with each other to form larger
pockets. We remark that the Dirac points are located at
exactly the same momenta for all values of κ.
Such a coexistence of Dirac points and Fermi surfaces is

rather surprising and is not expected to be stable. Instead,
due to the nature of the time-reversal and particle-hole
symmetries in the Majorana problem [65], one would
anticipate only Dirac points to be generically present, as
in all the other phases of Fig. 2. Indeed, we find that the
Fermi surfaces exist due to the particular simplicity of the
problem up to third-neighbor hopping terms [60] and
that each Fermi surface is gapped out into six Dirac points

FIG. 3. Majorana nodal structures (dark blue) in the various
π-flux phases: the Dirac phase (a), the first Fermi phase (b), the
Lifshitz transition between the two Fermi phases (c), and the
second Fermi phase (d). In the presence of generic further-
neighbor Majorana hopping terms [59], each Fermi surface is
gapped out into six Dirac points (red circles).
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(see Fig. 3) when generic fifth-neighbor hopping terms
[59], respecting the projective symmetries of the system,
are included in Eq. (3). However, assuming that such terms
are small enough, approximate Fermi surfaces are still
expected to be observable in experiments.
Experimental signatures.—The phase diagram in Fig. 2

contains a rich variety of phases with all possible Majorana
nodal structures in two dimensions, including Fermi surfa-
ces, Dirac points, and fully gapped scenarios. Because of
their distinct low-energy physics, these phases are charac-
terized by different experimental signatures. First, we expect
the low-temperature specific heat to behave as C ∝ T for
Fermi phases, C ∝ T2 for Dirac phases, and C ∝ e−Δv=T for
fully gapped phases, where the activated behavior should be
controlled by the vison gap Δv, as it is actually smaller than
the Majorana gap. Second, the various Majorana nodal
structures may be distinguished by their low-energy finger-
prints in spectroscopic probes, such as resonant inelastic
x-ray scattering [66,67]. Third, the Majorana Fermi surface
in the π-flux phase leads to impurity-induced Friedel
oscillations in the magnetic energy density [60]. In turn,
such magnetic Friedel oscillations should be measurable
with nuclear magnetic resonance (NMR), as they induce an
oscillatory bond-length modulation via magnetostriction.
For the vison-crystal phases in Fig. 2, the spontaneous

breaking of translation symmetry leads to further exper-
imental signatures. First of all, due to magnetostriction,
each vison crystal generates a characteristic bond-length
modulation throughout the lattice, which can be picked
up with NMR or elastic x-ray scattering. Moreover, the
enlarged unit cell results in a larger number of distinct
bands for the Majorana fermions, and, therefore, in contrast
to the pure Kitaev model [68,69], the dynamical spin
structure factor [60], directly measurable by inelastic
neutron scattering, has multiple peaks as a function of
the energy (see Fig. 4). Finally, unlike the fully symmetric
phases, each vison-crystal phase has a finite-temperature
phase transition at a critical temperature Tc.
Monte Carlo simulations.—To verify the phase diagram

in Fig. 2 and to extract the melting temperatures Tc of the
vison crystals, we performMC simulations ofH based on a
Metropolis algorithm to update the “classical” Z2 fields

fuαij ¼ �1g. The energy of each field configuration is
computed by diagonalizing the quadratic Majorana
Hamiltonian in Eq. (3) [70,71] on L × L lattices with
L ¼ f6; 12; 18g [60]. For each temperature, a single run
contains 10 000 MC sweeps for equilibration and another
20 000 MC sweeps for measurement [72].
Figure 5 shows our results for the heat capacity CðTÞ

and the static vison structure factor,

ρvðkÞ ¼
1

L2

X

p;p0
eik·ðXp−Xp0 ÞhWpWp0 i; ð4Þ

for representative parameters of four different vison crys-
tals, where Xp is the position of plaquette p and k is the
ordering wave vector of each vison crystal, corresponding
to either the K or the M point of the BZ. We first observe
that, as for the pure Kitaev model, CðTÞ exhibits both a
high- and a low-temperature peak, which correspond to
spinon and vison excitations, respectively [70,71].
However, the low-temperature peak signals the onset of
vison-crystal ordering at T ¼ Tc, as confirmed by the sharp
growth of the corresponding Bragg peak in ρvðkÞ. While
the three lattice sizes L ¼ f6; 12; 18g do not facilitate a
rigorous finite-size scaling analysis, the results in Fig. 5
suggest a first-order crystallization transition for all vison
crystals, except for the 1=3 flux crystal [73]. Assuming
that the transition into the 1=3 flux crystal is continuous,
it is conjectured to be in the universality class of the
two-dimensional 3-state Potts model, which in turn sug-
gests that the height of the peak in CðTÞ=L2 should be
∝ Lα=ν with critical exponents α ¼ 1=3, ν ¼ 5=6, and

FIG. 4. Dynamical spin structure factor Szzðq;ωÞ [60] for the
1=3 flux crystal (a) and the 3=4 flux crystal (b) along the path
M-Γ-K-M in the Brillouin zone [see the inset in (a)] via the
single-particle approximation of Ref. [69].
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FIG. 5. Temperature dependence of the specific heat and the
appropriate static vison structure factor for (a) the 1=3 flux crystal
with K3 ¼ 0.165K1 and K0

3 ¼ 0.19K1, (b) the 1=4 flux
crystal with K3 ¼ 0.165K1 and K0

3 ¼ 0.22K1, (c) the 2=3 flux
crystal with K3 ¼ 0.165K1 and K0

3 ¼ 0.26K1, and (d) the 3=4
flux crystal with K3 ¼ 0.19K1 and K0

3 ¼ 0.22K1 on L × L
lattices (L ¼ 6, 12, 18) containing N ¼ 2L2 sites.
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α=ν ¼ 2=5 [74]. We note that, for each vison crystal, the
critical temperature is Tc ∼ 10−2K1.
Discussion.—By considering a natural extension of the

honeycomb Kitaev model, we have found a rich spectrum
of novel spin-liquid phases that are not adiabatically
connected to the original Kitaev model, including a fully
symmetric π-flux spin liquid, and five distinct symmetry-
breaking spin liquids with various degrees of vison crys-
tallization. In the future, it would be interesting to study
how an external magnetic field affects our spin liquids. For
the Dirac phases, it may generate non-Abelian gapped spin
liquids with distinct Chern numbers of the Majorana
fermions [1]. For the gapped phases, it may lead to
nontrivial finite-field phase transitions between topologi-
cally distinct spin liquids.
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