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The fractional quantum Hall (FQH) effect at the filling number ν ¼ 5=2 is a primary candidate for non-
Abelian topological order, while the fate of such a state in the presence of random disorder has not been
resolved. We address this open question by implementing an unbiased diagnosis based on numerical exact
diagonalization. We calculate the disorder averaged Hall conductance and the associated statistical
distribution of the topological invariant Chern number, which unambiguously characterize the disorder-
driven collapse of the FQH state. As the disorder strength increases towards a critical value, a continuous
phase transition is detected based on the disorder configuration averaged wave function fidelity and the
entanglement entropy. In the strong disorder regime, we identify a composite Fermi liquid phase with
fluctuating Chern numbers, in striking contrast to the well-known ν ¼ 1=3 case where an Anderson
insulator appears. Interestingly, the lowest Landau level projected a local density profile, the wave function
overlap, and the entanglement entropy as a function of disorder strength simultaneously signal an
intermediate phase, which may be relevant to the recent proposal of a particle-hole Pfaffian state or
Pfaffian–anti-Pfaffian puddle state.
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Introduction.—The fractional quantum Hall (FQH)
effect [1] is a novel example of topological orders [2],
providing an ideal test bed for fractional statistics [3–6]. In
particular, the quasiparticles obeying non-Abelian statis-
tics are expected to form the building block for topological
quantum computation [7,8] and thus is of crucial impor-
tance. Thus far, the even-denominator FQH system at the
filling factor ν ¼ 5=2 is the most promising candidate for
experimental realizations of non-Abelian states [9–17].
While this ν ¼ 5=2 state was first experimentally identi-
fied 30 years ago [9], its exact nature remains under
intense theoretical debate. Among different candidates, the
non-Abelian Pfaffian state [4] as a fully polarized px − ipy

paired state of composite fermions [18] was numerically
established as a viable possibility [19–26]. The Pfaffian
state breaks particle-hole (PH) symmetry and has a partner
state known as the anti-Pfaffian state [27,28], which is also
a valid candidate. In the presence of an exact PH
symmetry, for example by projecting into the first excited
Landau level, the Pfaffian and anti-Pfaffian are exactly
degenerate; thus the emergence of one over the other is
determined by the PH symmetry breaking, e.g., through
Landau level mixing [29–32]. However, very recently, the
thermal Hall conductance of the ν ¼ 5=2 state is found to
be κxy ≈ 5=2 (in units of thermal conductance quanta)
[33], inconsistent with the Pfaffian (anti-Pfaffian) state,
for which thermal Hall conductance κxy ¼ 7=2ð3=2Þ is
expected.

The experimental observation of thermal Hall conduct-
ance κxy ¼ 5=2 is intriguing and a challenge for theoretical
understanding. One plausible interpretation is a PH
symmetric Pfaffian (PH-Pfaffian) state realized at ν ¼
5=2 [34–36], which is an s-wave pairing state built on
Dirac composite fermions [37]. Thus far, existing numeri-
cal works [19–22,30–32] do not support the PH-Pfaffian
state in microscopic models with dominant Coulomb
interactions. One possible reason is that the PH-Pfaffian
model wave function fails to represent a gapped and
incompressible phase [38–40]. Moreover, the experimental
observation can be alternatively explained by disorder-
induced mesoscopic puddles made of Pfaffian and anti-
Pfaffian states [41–44]. Compared to pure systems, there
are limited studies of the role of random disorder on the 5=2
state, which immediately raises some critical questions: Is
the PH-Pfaffian state or Pfaffian–anti-Pfaffian puddle state
energetically favorable in a disordered FQH system? In
light of the numerical supports of the Pfaffian (or anti-
Pfaffian) in disorder-free systems, another important ques-
tion is the following: What is the fate of the 5=2 FQH state
in the presence of disorder? Generally, when the disorder
strength becomes comparable to the strength of interactions
between electrons, the FQH state will eventually be
destroyed. A characterization of such a disorder-driven
transition is highly desirable to compare with experimental
observations [45]. To date, related studies of the disordered
FQH systems have been done only at ν ¼ 1=3, where a
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disorder-driven transition from the Laughlin state to an
Anderson insulator has been identified [46–48]. It remains
unclear to what extent the above picture will change
at ν ¼ 5=2.
In this Letter, we investigate the disorder-driven tran-

sition for the half-filled first excited Landau level, based on
which we illustrate a global phase diagram for such a non-
Abelian system in the presence of random disorder. First,
we show that the distribution of Hall conductances and the
associated topological invariant Chern number can be used
to distinguish among different quantum phases. We identify
a disorder-driven critical point separating the FQH state
carrying a unique quantized Chern number, from a
composite fermion liquid (CFL) that is characterized by
a distribution of fluctuating Chern numbers for different
disorder configurations. This is in sharp contrast to the ν ¼
1=3 FQH state, where the Laughlin state undergoes a
transition to an Anderson insulator [46,47] with a vanishing
Chern number at the strong disorder side. This phase
transition is also signaled by the variance of wave function
fidelity and the disorder configuration averaged entangle-
ment entropy, both of which support the same critical point
for the collapsing of the FQH effect by strong disorder. In
addition, we address the possibility of an intermediate
phase in moderate disorder strength, potentially relevant to
the disorder-induced PH-Pfaffian or Pfaffian–anti-Pfaffian
puddle state. Our Letter not only identifies a novel quantum
phase transition between the FQH state and a CFL but also
provides strong evidence to support the theoretical con-
jecture of disorder-stabilized FQH phase based on numeri-
cal simulations of the microscopic model for FQH systems.
Model and method.—We consider Ne electrons moving

on a torus under a perpendicular magnetic field. The torus
is spanned by L1 ¼ L1ex and L2 ¼ L2ey, where ex and ey
are Cartesian unit vectors, and L1 and L2 are lengths of the
two fundamental cycles of the torus. Required by the
magnetic translational invariance, the number of fluxes
penetrating a torus is equal to the number of orbitals in one
Landau level Ns ¼ L1L2=ð2πl2Þ (l ¼ 1 is the magnetic
length). The total filling fraction is then defined as ν ¼
ν0 þ Ne=Ns (ν0 ¼ 2 for 5=2 FQH systems due to the fully
occupied lowest Landau level). When the magnetic field is
strong, we can assume that electrons in the partially filled
Landau level are spin polarized and their dynamics is
restricted to the orbitals in the first excited Landau level.
The many-body Hamiltonian is

Ĥ ¼
XNs−1

mi¼0

Vm1;m2
m3;m4

â†m1
â†m2

âm3
âm4

þ
XNs−1

mi¼0

Um1
m2
â†m1

âm2
;

where a†mðamÞ is the creation (annihilation) operator of an
electron in the orbital m. By choosing Landau gauge, the
momentum conserved interaction terms can be expressed as

Vm1;m2
m3;m4

¼ 1

Ns
δ modNs
m1þm2;m3þm4

×
Xþ∞

q1;q2¼−∞
δ modNs
q2;m1−m4

VðqÞe−ð1=2Þjqj2eið2πq1=NsÞðm1−m3Þ;

where VðqÞ ¼ 1=jqj represents the Coulomb interaction
and q ¼ ðqx; qyÞ ¼ ð2πq1=L1; 2πq2=L2Þ. The disorder
term is

Um1
m2

¼ 1

2πNs

X∞

q1;q2¼−∞
δ modNs
t;m1−m2

UðqÞe−ð1=4Þjqj2eiðπq1=NsÞð2m1−q2Þ;

where UðqÞ ¼ R
dreiq·rUðrÞ mimics the random disorder.

To study the effects of correlated potential, we use the
Gaussian correlated random potential hUðqÞUðq0Þi ¼
ðW2=2πNsÞδq;q0e−2q2ξ2 , where ξ is the correlation length.
We obtain the ground state fjΦkig of Ĥ using the exact

diagonalization (ED) algorithm. Owing to the lack of
translational symmetry in the presence of disorder, the
system sizes accessible by ED are limited toNe ≤ 12 by the
current computational capability. In our extensive tests,
Ne ≤ 8 systems suffer from very strong finite size effect, as
the topological Pfaffian states are not fully developed for a
pure system [22], so we will focus on Ne ¼ 10, 12 below.
We averaged up to 2000 and 500 samples for Ne ¼ 10 and
Ne ¼ 12, respectively, which gives quantitatively reliable
results.
Statistics of Chern number.—Identifying the topological

invariant is crucial for characterizing the underlying
physics of topological ordered states. Conventionally,
FQH states are characterized by the Hall conductance
and the associated Chern number [49–51], which deter-
mines the intrinsic topology of the wave function [52] and
the corresponding gapless edge excitations at a system
boundary [53]. In the presence of disorder, the Hall
conductance also offers an unambiguous criterion to dis-
tinguish the insulating state from quantum Hall states in an
interacting system [46,47,54]. To be specific, under twisted
boundary conditions, the wave function becomes

jΨki ¼ exp

�
−i

XNe

i¼1

�
θ1
L1

xi þ
θ2
L2

yi

��
jΦki;

where θi is the boundary phase and ðxi; yiÞ is the coordinate
of particles. The boundary phase averaged Hall conduct-
ance is σHðkÞ ¼ Cke2=h, where Ck is defined as [46]

Ck ¼
i
4π

I

Γ
dθ

��
Ψk

����
∂Ψk

∂θ
�
−
�∂Ψk

∂θ
����Ψk

��
:

Here, the closed path integral is carried out along the
boundary Γ of the boundary parameter space (the magnetic
Brillouin zone) 0 ≤ θ1, θ2 ≤ 2π. Ck is equivalent to the
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Berry phase (in units of 2π) accumulated when the
boundary conditions evolve along the closed path Γ.
Let us start by discussing the salient features of the Chern

number statistics for different disorder strengths. We tune
the aspect ratio L1=L2 to find the energy spectrum with
sixfold near degeneracy separated from other excited states,
which characterizes the particle-hole symmetrized Pfaffian
state [20]. Taking into account the fact that the lowest six
states should become degenerate in the thermodynamic
limit, we introduce probability PðCÞ of the total Chern
number distribution, which describes the probability that
the total Chern number of the lowest Ng ¼ 6 near degen-
erate states is C in our sample configurations. For a weak
disorder strength [Fig. 1(a)], PðCÞ takes unity for C ¼ 3
and zero forC ≠ 3 (i.e., the lowest six states haveC ¼ 3 for
all the disorder configurations); thus each nearly degenerate
ground state carries a Hall conductance of σH ¼ e2=2h,
which manifests the ν ¼ 5=2 FQH state on a torus.
In the strong disorder regime, disorder tends to change

the Chern number of each state and results in redistrib-
utions of probabilities of different Chern numbers. As
shown in Fig. 1(a), whenW > 0.1, PðCÞ becomes nonzero
for C ≠ 3, with nearly equal probabilities for Chern
numbers larger or smaller than 3 to appear in different
disorder configurations. For example, at W ¼ 0.1,
PðC ¼ 3Þ is reduced to 0.95, while PðC ¼ 2Þ ≈ 0.025.
Upon increasing disorder strength, PðC ¼ 3Þ monotoni-
cally decreases and the distribution of PðCÞ becomes
broader. The coexistence of different Chern numbers
characterizes the delocalization of quasiparticle excitations.
In particular, even though PðCÞ has a broad distribution
instead of a single nonzero value, we identify that the
averaged Chern number remains approximately quantized

to hCi ≈ 3, for example, hCi ≈ 2.98 at W ¼ 0.24. This
observation demonstrates that each ground state still carries
nonzero averaged Hall conductance in the strong disorder
regime, which is consistent with a CFL rather than an
Anderson insulator [55]. Plausible understanding comes
from the fact that various FQH ν ¼ 5=2 states, such as
Pfaffian and anti-Pfaffian ones, can be interpreted as
pairing states built on a half-filled CFL [37,66] with
different underlying pairing symmetries [18]. While the
transition follows the destruction of the pairing mechanism
by disorder, disorder cannot localize composite fermions at
half filling, since the backscattering and localization are
suppressed due to the intrinsic π-Berry phase [67–71]. As a
comparison, in the case of ν ¼ 1=3 FQH, strong disorder
destroys the quantization of the Chern number and leads to
hCi ≈ 0, which suggests a topologically trivial Anderson
insulator in the disorder dominating regime [46,47,72].
To quantify the evolution of Chern number statistics with

respect to disorder strength, we demonstrate the fluctuation
of the Hall conductance hδσ2Hi as a function of disorder
strength W in Figs. 1(b) and 1(c). In the weak disorder
regime, we observe that Hall conductance carried by each
ground state is always quantized to hσHi ¼ e2=2h with
little fluctuation hδσ2Hi ≈ 0. In the strong disorder regime,
despite hσHi being quantized, the broad Chern number
distribution leads to a finite fluctuation of the Hall
conductance hδσ2Hi ≠ 0. We can identify a critical disorder
strength Wc separating a FQH state with zero fluctuation
from a critical state with finite fluctuations, as marked by
arrows in Figs. 1(b) and 1(c). The above picture holds
for all correlation lengths ξ and system sizes that we
tested [56].
Entanglement entropy.—Topological phases are charac-

terized by the long-range quantum entanglement patterns
[73–75]. As a novel application, it is found that the
entanglement entropy is sensitive to the quantum criticality
in both clean systems [76,77] and disordered Abelian FQH
systems [48,78]. Figure 2 shows the evolution of entropy
by increasing disorder strength at ν ¼ 5=2 [79]. We find
that the entropy S monotonically decreases with the
increase of W. Importantly, a kink develops near the criti-
cal strength Wc [indicated by arrows in Fig. 2(a)], where
the slope of entropy shows discontinuity [Fig. 2(b)].

(a)

(b) (c)

FIG. 1. (a) Probability distribution PðCÞ of total Chern number
C for various disorder strengths W. Here, we set ξ ¼ 1.0 for a
system with Ne ¼ 10 electrons. The Hall conductance σH and its
fluctuation ðδσÞ2H versus disorder strength W for (b) ξ ¼ 0.0 and
(c) ξ ¼ 1.0. The error bar shows the standard error in the disorder
averaged value.

FIG. 2. (a) Entanglement entropySversusdisorder strengthW of
Ne ¼ 10 electrons for various correlation lengths ξ. The data for
different ξ are shifted in thevertical direction for clarity. (b)Deriva-
tive of entropy with respect to the disorder ∂S=∂W for ξ ¼ 1.0.
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This sudden change of ∂S=∂W shows a consistent sig-
nature of the expected quantum phase transition. Moreover,
we also identify a trend of the increasing of the critical Wc
for larger values of ξ. Importantly, the entanglement
measurements give largely consistent identifications of
the quantum critical point Wc compared to that identified
by Chern number statistics (Fig. 1).
Implications for an intermediate phase.—The evolution

of Hall conductance and its fluctuation unambiguously pin
down the phase transition between the 5=2 FQH state and
the CFL state. However, we are not able to distinguish the
precise nature of different FQH states because possible
candidates, including Pfaffian, anti-Pfaffian, or PH-Pfaffian
states, carry the same Hall conductance. Next we further
explore the phase transition at the wave function level.
First, we define the wave function overlap matrix,
Oij ¼ hΦiðWÞjΦPf

j ðW ¼ 0Þi, between the lowest six states
for disordered system with the Pfaffian states, and the total
overlap hOi (fidelity) as the summation of eigenvalues of
the overlap matrix, where h� � �i indicates the average over
the disorder configurations. In Fig. 3, we show that the
wave function fidelity monotonically decreases with the
increase of the disorder, which does not show a clear
signature of the possible quantum phase transition between
different FQH states. Interestingly, we find that the fluc-
tuation of wave function fidelity hðδOÞ2i is sensitive to the
phase transition. This is because, in the pure system, the
wave function is characterized by a Pfaffian (anti-Pfaffian)
wave function, which is a product of the Laughlin state
for bosonic ν ¼ 1=2 and a px � ipy wave function for
composite fermions. Physically, the fluctuation of wave

function fidelity hδO2i can detect the phase fluctuations of
a wave function deviating from the px � ipy form. To be
specific, we identify a single peak in hδO2i for a short
correlated length [Figs. 3(a) and 3(e)], which indicates a
single phase transition by tuning disorder strength W. For
disorder with a long correlated length, we find a two-step
phase transition, evidenced by hδO2i experiencing two
sudden jump aroundW� andWc [e.g., Figs. 3(b) and 3(c)].
It demonstrates an intermediate regime with finite hδO2i
emerging between W� < W < Wc. This observation sig-
nals an intermediate phase stabilized by correlated disorder.
The upper bound of this intermediate regime Wc separates
the FQH state from the non-FQH state, and the lower bound
W� indicates another transition point from a pure Pfaffian
(or anti-Pfaffian) to an intermediate phase.
To inspect the effect of disorder in real space, we show

the projected electron density ρðrÞ in Fig. 4, which is the
equivalent electron density describing the spatial distribu-
tion of the guiding center [80–82]. The many-body density
of states is qualitatively distinguishable from the pure limit:
Density modulation is pronounced in spatial space and
forms puddle structures starting from W ≳W�.
The appearance of additional critical strength W� in the

variance of wave function fidelity and projected electron
density is suggestive of a possible intermediate phase
stabilized by correlated disorder approximately within
W� ≲W < Wc. At the quantitative level, nonzero correla-
tion length pushes the criticalWc to a larger value [Figs. 3(b),
3(c), 3(f), and 3(g)], leaving a wider region for the inter-
mediate phase, which again indicates that an intermediate
phase is favored by correlated disorder. Accordingly, we
label an intermediate FQH phase in the phase diagram
[Figs. 3(d) and 3(h)]. The intermediate regime exists on
system sizes bothNe ¼ 10 andNe ¼ 12, based onwhichwe
speculate that it wouldmaintain in the thermodynamic limit.
These observations are consistent with the theoretical pic-
tures for the disorder stabilized PH-Pfaffian state [34] or
Pfaffian–anti-Pfaffian puddle state [41–43].
Summary and discussion.—We have presented a sys-

tematic numerical study of correlated disorder-driven
quantum phase transitions for the ν ¼ 5=2 fractional
quantum Hall effect. First, the distribution of topological
Chern numbers and corresponding Hall conductance fluc-
tuations are capable of directly probing the collapse of the
fractional quantum Hall state, which also determines the
quantum critical points for random disorder with different
correlation lengths. Second, the phase transition is also

FIG. 3. Averaged wave function fidelity hOi and fluctuation of
wave function fidelity hδO2i as a function of disorder strengthW
for various correlation length ξ ¼ 0.5, ξ ¼ 1.0 and ξ ¼ 1.5. The
calculation is performed on the systems with Ne ¼ 10 (top panel,
a–c) and Ne ¼ 12 (bottom panel, e–g). The intermediate phase is
marked by light yellow which is determined by finite fluctuation
hδO2i. The phase diagram determined from the hδO2i is shown in
(d) and (h).

FIG. 4. The projected electron density ρðrÞ for various disorder
strengths for ξ ¼ 1.0 for systems with Ne ¼ 10.
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signaled by the wave function fidelity and entanglement
entropy. The critical disorder strengths obtained from
different methods are consistent with each other, validating
the reliability of our numerical results. Third, in the strong
disorder regime, we identify a composite Fermi liquid as
the ground state, rather than an Anderson insulator as
realized at filling number ν ¼ 1=3, demonstrating a rich
physics for strongly correlated disorder systems. Last but
not least, our results imply a possible intermediate phase
stabilized by correlated disorder potentials, as evidenced
by fluctuations of wave function fidelity and the puddlelike
structures in projected densities of states. Although we
cannot pin down the nature of the intermediate phase, these
results provide the essential step towards understanding the
nature of the disorder-stabilized 5=2 quantum Hall state in
the half-filled first excited Landau level from a microscopic
point of view. We estimate that some existing experiments
would fall into the intermediate regime (see Ref. [56]),
which will motivate more experimental activities searching
for the disorder-stabilized 5=2 state. Furthermore, our work
indeed opens up several directions for further exploration.
For example, to connect with the previous studies on
network models [41,42], it is important to identify the
neutral chiral modes on the domain walls between ran-
domly distributed puddles. In addition, the diagnosis of
quantum fluctuations via various quantities shown here
provides a practical way to study quantum criticality for
general disordered, interacting fractionalized topological
systems.
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