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Neural networks are transforming the field of computer algorithms, yet their emulation on current
computing substrates is highly inefficient. Reservoir computing was successfully implemented on a large
variety of substrates and gave new insight in overcoming this implementation bottleneck. Despite its
success, the approach lags behind the state of the art in deep learning. We therefore extend time-delay
reservoirs to deep networks and demonstrate that these conceptually correspond to deep convolutional
neural networks. Convolution is intrinsically realized on a substrate level by generic drive-response
properties of dynamical systems. The resulting novelty is avoiding vector matrix products between layers,
which cause low efficiency in today’s substrates. Compared to singleton time-delay reservoirs, our deep
network achieves accuracy improvements by at least an order of magnitude in Mackey-Glass and Lorenz
time series prediction.
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Neural networks have emerged as the current disruptive
computational concept. When cascading multiple network
layers, these systems set the benchmark in multiple
challenging tasks [1]. In such deep neural networks, layers
are dedicated to highlight specific aspects of the input-
information, and previous layers commonly serve as input
of consecutive layers. Such a hierarchical arrangement is
crucial for boosting the computational performance. In
deep convolutional neural networks (CNN), layers con-
volute their input with spatial filters. By increasing filter
width and step size, deeper layers focus on more general
features, while local features are highlighted in earlier
layers [2].
In the wake of deep neural networks’ success, it was

realized that their emulation on Turing or von Neumann
machines is highly inefficient. This stimulated strong
interest in the realization of neural networks in physical
substrates whose architecture submit to the networks’
topology. Particularly photonic systems, which offer key
advantages for parallelization, are considered a promising
future alternative. However, directly mapping the complex
topology of a deep neural network onto a hardware
substrates presents a significant challenge. Of essential
importance are therefore concepts which strike a balance
between architectural complexity and hardware implemen-
tation simplicity.
Among the various neural network architectures, reservoir

computers [3] have emerged as especially interesting theo-
retical model systems [4–6] and promising candidates for
hardware implementations. A reservoir computer is a com-
plex recurrent neural network and conceptually corresponds
to a high-dimensional nonlinear dynamical system. Training
is restricted to the connections between the reservoir and its

output, and hence the nonlinear dynamical system’s topo-
logy remains constant. This strongly assists implementations
in physical substrates, resulting in a large number of
realizations in nonlinear photonic [7] and other physical
systems [8]. Yet, precisely this simplicity raised fundamental
concerns regarding deep reservoirs. Recently it was found
that, comparable to deep convolutional networks, a continu-
ous change of spatial frequency in the response of con-
secutive layers appears beneficial [9,10]. The workhorse of
the field have been nonlinear delay systems implementing
time delay reservoirs (TDRs) [7,11,12]. These offer a
compromise between good computing performance and
exceptional ease of hardware implementation and serve
as model systems for more complex hardware substrates
[13–15].
We report on a deep reservoir scheme comprising

hierarchically coupled nonlinear delay oscillators exhibit-
ing dynamics on multiple timescales. Crucially, coupling
between different layers is constant and training remains
limited to the readout weights, in contrast to a proposed
deep hardware TDR [16]. This is an essential simplification
as it adheres to the conceptual simplicity motive, which
strongly fosters hardware implementation. We find that
cascading significantly and qualitatively improves compu-
tational performance when compared to a single layer
reservoir of identical size. Crucially, our architectural
simplicity curbs the challenges particular to physically
implementing complex and large networks.
In Fig. 1, we schematically illustrate our deep TDR

concept. Dynamics are governed by the following set of
equations:

τi _xiðtÞ ¼ −xiðtÞ − δiyiðtÞ þ βisin2½diðtÞ þ bi�; ð1Þ
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_yiðtÞ ¼ xiðtÞ; ð2Þ

diðtÞ ¼ xiðt − τDiÞ þ
X

p¼�1

wiþp;ixiþpðtÞ þ ρiuðtÞ; ð3Þ

ρi≠1 ¼ 0; δ1 ¼ 0: ð4Þ

The state of the delay-coupled node in layer i ∈ f1;…; Ig
is given by xiðtÞ, and we use the sin2 nonlinearity often
employed in photonic TDRs [17,18]. Due to inertia,
dynamics generally experience low-pass (LP) filtering
according to a fast time constant τi, which can be extended
to bandpass (BP) filtering when a slow time constant δi is
added [19]. Each layer’s nonlinearity is weighed by
bifurcation parameter βi, and the nonlinearity’s argument
contains constant bias bi and a time-dependent drive diðtÞ,
see Eq. (3). Drive diðtÞ features self-feedback delayed by
τDi and potentially bidirectional coupling to adjacent layers
according to coefficients wi�1;i. Only the first layer is
coupled to uðtÞ, see Eq. (4). External drive uðtÞ encodes the
information to be processed sðtÞ according to the temporal
masking procedure which implements a linear matrix
multiplication [12,20]. We have employed a desynchron-
ized information injection procedure in which each value of
sðtÞ is kept for an input-masking length of 0.8τDi.
According to Eq. (3), layer i is coupled to layer

iþ 1 (i − 1) according to the fixed connection weight
wiþ1;i (wi−1;i), and coupling to i − 1 ¼ 0 is unphysical and
hence eliminated. Therefore, a recurrent layer simply
consists of one hardware nonlinearity, one linear delay
line and its fixed connections to previous or consecutive
layer. This has multiple consequences. First, interlayer
coupling is instantaneous and constant in time. Training of
the interlayer connections, a long-time open question for
deep reservoirs [10] and significant challenge for full
hardware integration [21], is therefore avoided. Second,

such a minimal complexity architecture [22] can readily
be implemented in hardware [8]. Finally, it allows estab-
lishing a clear mapping from deep TDRs onto deep
convolutional neural networks.
The fact that TDR layers can be termed convolutional

originates from a nonlinear dynamical node’s response to
perturbations. The state of a nonlinear node in layer i is
given by the convolution between its impulse response
function hiðtÞ and its drive diðtÞ. Combined with a
normalization of continuous time t by feedback delay
τDi, one can express the dynamical evolution by

t
τDi

¼ nþ σi=Ni; σi ∈ f1; Nig; n ∈ f1; 2;…g; ð5Þ

xσii ðnÞ ¼
Z

nþσi

−∞
hiðnþ σi − ξÞsin2½diðξ − 1Þ þ bi�dξ; ð6Þ

withNi as the number of neurons in layer i, see Fig. 1. First,
Eqs. (5) and (6) map continuous time t onto discrete time n
and node σi’s position relative to delay time τDi. Details of
this temporal embedding technique can be found in
[11,12,23]. Second, expressing the dynamical evolution
via the convolution operation shows that a node’s impulse
response function corresponds to the convolution kernels of
a CNN layer. Crucially, coupling created with such a
dynamical convolution can directly be translated to the
convolution kernel of spatiotemporal networks [12,24].
The analogy between cascaded TDRs and deep convolu-

tional networks goes further. Layers of a CNN commonly
feature convolution kernels whose width increases the
further back in the cascaded hierarchy a layer is located
[2]. This operation is often associated with generalization:
convolution with wider filters reduces the importance of
local features in their input, while more general aspects are
highlighted. The cascaded arrangement of layers in CNNs
therefore produces layers which accentuate different input
information features. In TDRs, increasing the convolution
kernel’s width corresponds to widening hiðtÞ, see the
Supplemental Material [25]. Here this is realized by an
additional low-frequency cutoff according to timescale δi in
Eqs. (1) and (2), and we enforce widening kernels. In Fig. 2
we show the response of a three-layer deep TDR driven by
the chaotic Mackey-Glass sequence. Each sample corre-
sponds to δt ¼ 1 time step of the Mackey-Glass system,
for which we used the same parameters as in Ref. [3]. The
parameters are β2;3 ¼ 1.1, τ1 ¼ 6 × 10−3, τ2;3 ¼ 7 × 10−3,
τDi ¼ 17.85, Φ0 ¼ 0.2, δ2;3 ¼ 0.01, w1;2 ¼ 0.7, w2;3 ¼
0.8, w2;1 ¼ w3;2 ¼ 0. Responses are plotted in spatiotem-
poral representation [23,26], where nodes are arranged
along σi and the temporal evolution is along discrete time n,
with n typically close to a system’s delay τD [12]. As we
move into higher layers, from (a) to (c) in Fig. 2, dynamics
do highlight different spatiotemporal scales. Our deep TDR

FIG. 1. Schematic of cascaded nonlinear oscillators acting as
deep network, here consisting of two layers. Two coupled
nonlinear delay systems x1ðtÞ with states x2ðtÞ implement
individual time delay reservoir layers. Information is injected
into the first system, and nonlinear nodes are coupled instanta-
neously according to weights w1;2 and w2;1. The readout layer has
access to all layers.
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therefore hosts features much like those taken into con-
sideration in the design of CNNs.
Creating a computational result requires to connect the

deep TDR to an output via weights adjusted during
learning. Our readout layer has access to all virtual nodes
of all network layers, and the system’s output is created
according to

youtj ðnÞ ¼
XI

i

XNi

σi

Wout
i;σi;j

xσii ðnÞ: ð7Þ

Here, j is the dimension of the system’s output, which
depends on the particular task. Commonmethods to obtain
Wout are based on linear or ridge regression, and Wout is
optimized using a representable set of training data [3,12].
In experimental systems, these methods can be imple-
mented in auxiliary hardware like field-programmable gate
arrays [27], or can to a degree be replaced by Boolean
learning algorithms [14]. Recurrent neural networks
are primarily relevant for processing temporal information.
We therefore task the system to predict chaotic sequences
Δn time steps into the future. Training optimizes Wout for

youtðnÞ to approximate target yTðnÞ ¼ sðnþ ΔnÞ; n ∈
f1; nTg, where nT ¼ 5000 are the number of samples used
for training. We quantify the prediction’s quality for
n > nT , hence on testing data not used for training the
system, according to the normalized mean square error
NMSE ¼ 1=nT

P
n¼1;…;nT ½yTðnÞ − youtðnÞ�2=ðσTÞ2, where

σT is the target-signal’s standard deviation.
First, we predict the chaotic Mackey-Glass delay equa-

tion, which features a delay of 17 time steps. By predicting
ahead twice its delay (Δn ¼ 34), the objective is long-term
prediction. We establish a systematic interpretation by
cascading only two TDR layers (Ni ¼ 600) and display
the performance dependence on the exhaustively scanned
system parameters in Fig. 3. We keep τ1 ¼ 0.6 × 10−3,
τ2 ¼ 0.6 × 10−3, τD1;2 ¼ 12, b1;2 ¼ 0.2, ρ1 ¼ 8, and δ2 ¼
0.01 constant, with their values mostly based on empirical
observations. In order to provide a baseline reference for
other topologies, we evaluate uncoupled layers (w1;2 ¼
w2;1 ¼ 0) and scan the bifurcation parameter plane (β1, β2),
see Fig. 3(a). Importantly, for this test we set ρ2 ¼ ρ1 and
hence couple the BP layer to the same input as the LP layer.
We find a clear optimum for β1, while performance depend-
ence on β2 is less pronounced. The lowest error (NMSE ¼
8.3 × 10−6) is obtained at β1 ¼ 1.4 and β2 ¼ 1.2.
We now turn to different coupling topologies and dis-

connect the second layer from the system’s input information
(ρ2 ¼ 0, w1;2 ¼ 0.7, w2;1 ¼ 0.6). Figure 3(b) shows that
bidirectional coupling significantly alters the optimal bifur-
cation parameters and results in a equally pronounced β2
dependency. We obtain NMSE ¼ 8.8 × 10−6 at β1 ¼ 1.4
and β2 ¼ 1.2, and the performance benefit of bidirectional
coupling is negligible. Continuing with the optimized value
of βi, we focus on the coupling topology by exhaustively
scanning w1;2 and w2;1, see Fig. 3(c). The NMSE reveals
some performance sensitivity upon the coupling-strength
from the first to the second layer. The most important finding
is, however, that there is a systematic dependency upon
w2;1: the clear global performance optimum is found for

(c)(a) (b)

FIG. 2. Neuron responses [xσii ðnÞ] found in layers i ¼ 1 (a),
i ¼ 2 (b), and i ¼ 3 (c), illustrated in a spatiotemporal (σi, n)
representation. The spatial frequency along virtual space σi
continuously decreases for the higher layers. Comparable func-
tionality is implemented in deep convolutional networks or deep
reservoirs.

(c)(a) (b)

FIG. 3. Coupling strongly enhances the network’s performance for predicting the chaotic Mackey-Glass time series by Δn ¼ 34 steps
into the future. (a) The uncoupled system [both systems receive the input sequence uðtÞ] (w1;2 ¼ w2;1 ¼ 0) achieves
NMSE ¼ 8.3 × 10−6. (b) Bidirectional coupling (w1;2 ¼ 0.7, w2;2 ¼ 0.6) results in no improvement (NMSE ¼ 8.8 × 10−6). (c) The
decisively best performing architecture is the unidirectional coupling between the recurrent layers, i.e., feed-forward connections
(w1;2 ¼ 1.4, w2;1 ¼ 0): NMSE ¼ 1.3 × 10−6.
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unidirectional coupling with w2;1 ¼ 0. The achieved pre-
diction error (NMSE ¼ 1.3 × 10−6) is ∼3 times smaller than
for the bidirectional and the uncoupled systems, confirming
the benefit of the hierarchical arrangement between con-
secutive network layers also for TDRs.
To further generalize our finding, we turn to predicting

the chaotic Lorenz system. The Lorenz system is a three-
dimensional set of ordinary differential equations. Each
sample corresponds to δt ¼ 0.02 time steps, and we used
the same parameters as in Ref. [28]. The input information
was the Lorenz system’s first dimension xðnÞ, and the
prediction target was yTðnÞ ¼ xðnþ 1Þ; hence, Δn ¼ 1.
Results are listed in Table I. Prediction performance is
again enhanced by the addition of two layers in a
unidirectional configuration. However, on a first glance
the positive benefit appears to be smaller.
Until now prediction only evaluated the system via

predicting ahead by distance Δn. A more suited approach
to determine the capacity of approximating a chaotic system’s
behavior is based on the so-called teacher forcing [3]. After
training using Δn ¼ 1, the system’s input becomes its own
output, sðñÞ ¼ youtðñ − 1Þ; ñ ¼ n − nT; n > nT . The TDR
becomes an autonomous predictor of the learned system [3],
and the autonomous evolution enables comparison to the
original chaotic sequence over long intervals. Crucially, this
corresponds to predicting until ñ only relying information of
the original signal at nT ; the prediction autonomously
advances from there. This reveals how well the chaotic
system as a whole is approximated by the neural network.
Figures 4(a) and 4(c) show autonomous evolution for

Lorenz and Mackey-Glass prediction using three cascaded
TDR layers with unidirectional coupling. The prediction
targets are the black solid data. The positive impact of deep
(red dashed data) over the single-layer (blue dotted data)
TDRs is apparent, and particularly striking when predicting
the Lorenz system, see Fig. 4(a). Rather than chaotic
excursions along an attractor, the autonomous single layer
TDR quickly converges to a dynamical state resembling a
limit cycle and therefore fails to reproduce its target system.
Only with the three layers coupled in a deep, unidirectional
topology the network is capable of an excellent approximate
of Lorenz chaos. This is also visible from the temporal
divergence measured as the Euclidean distances between
the Taken’s reconstructed attractors of youtðñÞ and yTðñÞ,
see Figs. 4(b) and 4(d). The solid black lines indicate the
divergence according to the maximum Lyapunov exponent

(Mackey-Glass: λmax ¼ 5.8 × 10−3, Lorentz: λmax ¼ 0.91).
Cascading layer improves prediction by a factor of 20 and
10.5 for Lorenz and Mackey-Glass prediction, respectively.
The substantial improvement and fundamental importance
of the cascaded, three-layer deep TDR architecture can be
further appreciated by inspection of the resulting return
maps, see the Supplemental Material [25].
We shall finish our investigation by also discussing

limitations of our approach. The range of possible kernel
shapes is limited by physical constraints and have not
been optimized during training, through this is possible in
principle. Also, deep TDRs do no yet reach the accuracy
of the original spatiotemporal reservoir [3]. Predicting the
Mackey-Glass time series 84 steps into the future results
in NMSE ¼ 10−4.4 with our deep TDR, while the original
reservoir achieves NMSE ¼ 10−8.4 [3]. However, multi-
ple simple additions to the current concept could still
significantly improve performance [29,30]. Using current
high-performance hardware [31], CNN still run five times
slower than TDRs [11]. However CNNs are optimized via
back propagation, which will certainly result in lower
errors than deep TDRs. If error back propagation can be
realized in deep hardware networks remains questionable,
while training of our system retains the simplicity and
elegance of reservoir computing.
To conclude, we have introduced an elegant scheme

for deep convolutional networks in a simple architecture
of coupled nonlinear oscillators with delay. Information
processing conditions conceptually comparable to deep
convolutional neural networks with widening convolution
kernels are achieved by cascading TDRs with increasingly

TABLE I. Comparison for different architectures with identical
total number of neurons N ¼ 1200. Layers are lp ¼ low pass,
bp ¼ bandpass. LZ: Lorenz chaotic time series one step prediction
parameters: τ1 ¼ 0.006, τ2 ¼ τ3 ¼ 0.007, δ2 ¼ δ3 ¼ 0.01, β1 ¼
1.5, β2 ¼ β3 ¼ 1.2.

Nodes per layer Coupling strength LZ NMSE

1200 lp � � � 7.6 × 10−7

600 lp, 600 bp w1;2 ¼ 1.1 5.7 × 10−7

400 lp, 400 bp, 400 bp w1;2 ¼ w2;3 ¼ 1.1 2.5 × 10−7

(a)
(b)

(c) (d)

FIG. 4. When connecting the system to its own predicted output
at ñ ¼ 1, its dynamical evolution becomes autonomous from the
original chaotic time series. The top x axis is in units of the
inverse Lyapunov exponent. The long-term prediction perfor-
mance for predicting the Lorenz (a) and Mackey-Glass system
(c) via the connected (not connected) system as red dashed (blue
dotted) data. Divergence between the predicted and the original
attractors are shown in (b) and (d) for Lorenz and Mackey-Glass,
respectively. The solid line indicates divergence according to the
largest Lyapunov exponent.
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longer internal timescales. Intra- and interlayer connectivity
can be adjusted via the oscillators’ timescales, providing a
practical control mechanism for hardware realizations.
Applied to both, Mackey-Glass and Lorenz chaos

prediction, our concept significantly improves the quality
of long-term predictions and proofs essential in the case of
Lorenz forecasting. Recently, reservoirs have been dem-
onstrated to infer a chaotic oscillator’s hidden degrees of
freedom [28] and to predict the evolution of chaotic
spatiotemporal systems far into the future [32]. Temporal
structure found in the divergence between prediction and
target, such as in Fig. 4(d), could be addressed via further
optimizing timescales τi and δi.
Finally, we would like to point out the large variety of

possible hierarchical TDR networks. Hybrid systems,
where for some or all layers self-feedback is removed,
would incorporate feed-forward architectures [33]. Layers
featuring excitable solitons can potentially create long term
memory [34] and, when combined with the reported LP and
BP layers, physically implement long-short term memory
networks [35]. This opens possibilities in new domains like
natural language processing and sequence generation.
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