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The fuzzy dark matter (FDM) model treats DM as a bosonic field with an astrophysically large de
Broglie wavelength. A striking feature of this model isOð1Þ fluctuations in the dark matter density on time
scales which are shorter than the gravitational timescale. Including, for the first time, the effect of core
oscillations, we demonstrate how such fluctuations lead to heating of star clusters and, thus, an increase in
their size over time. From the survival of the old star cluster in Eridanus II, we infer ma ≳ 0.6 →
1 × 10−19 eV within modeling uncertainty if FDM is to compose all of the DM and derive constraints on
the FDM fraction at lower masses. The subhalo mass function in the Milky Way implies ma ≳ 0.8 ×
10−21 eV to successfully form Eridanus II. The region between 10−21 and 10−20 eV is affected by narrow
band resonances. However, the limited applicability of the diffusion approximation means that some of this
region may still be consistent with observations of Eridanus II.
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A wide variety of astrophysical observations require the
existence of nonbaryonic dark matter (DM) [1–4]. At two
extreme ends of the model space lie primordial black holes
(PBHs)withmasses as large asMPBH ≈ 10 M⊙, and “fuzzy”
DM (FDM) composed of particles (possibly axions) as light
as ma ≈ 10−22 eV [5–8]. The fraction of DM allowed in
heavy PBHs is severely constrained by the dynamics of stars
in ultrafaint dwarf galaxies (UFDs) [9,10]. Two body
relaxation and gravitational scattering between PBHs leads
to heating of stars in the DM potential. This causes star
clusters to grow in size on time scales incompatible with
their observed sizes and ages, excluding a range of the PBH
DM parameter space. In the following, we will show that,
somewhat remarkably, thevery sameobservations of old star
clusters in UFDs place strong constraints on FDM para-
meter space.
FDM is modeled as a coherent bosonic field, ϕ. In the

minimal noninteracting case, the potential is VðϕÞ ¼
m2

aϕ
2=2, and the field coherently oscillates in the mini-

mum. This coherence leads to fluctuations on two distinct
time scales. First, relativistic Compton scale fluctuations of
order m−1

a ≈m−1
22month, where m22 ¼ ma=10−22 eV, lead

to pressure perturbations and, in turn, metric fluctuations
and can be searched for by a variety of techniques [11–15].
They also underlie methods of direct detection of FDM
[16]. In the present Letter, we neglect Compton fluctua-
tions, since the time scale is not relevant to the dynamics of
star clusters.
Fluctuations also occur on the de Broglie scale, λdB ¼

2π=mav, with oscillation period τosc ¼ 2π=mav2 (we use
units ℏ ¼ c ¼ 1). In linear theory, these fluctuations
manifest as the FDM Jeans scale [17], which suppresses
structure formation relative to cold DM (CDM). This drives

cosmological constraints on FDM [18–25], leading to the
bound ma ≳ 10−22 → 10−21 eV depending on the data and
modeling. In terms of the halo mass function, numerical
[20,22] and semianalytical [6,26] calculations predict that
the abundance of halos in FDM is severely reduced relative
to CDM for masses less than Mcut ≈ 3 × 108m−3=2

22 M⊙.
Inside DM halos, the de Broglie fluctuations are

observed in simulations as granular structure in the outer
halo resulting from wave interference [27,28]. It is the
central insight of Ref. [8] that these fluctuations can be
treated statistically as short-lived quasiparticles and lead to
heating effects and relaxation in a similar way to PBHs. The
relaxation time is estimated as

trelax
1010 yr

∼m3
22

�
v

100 km s−1

�
2
�

r
5 kpc

�
4

: ð1Þ

The effect of FDM fluctuations on stellar dynamics in the
Milky Way (MW) region has been investigated extensively,
imposing constraints on the FDM mass of ma > 0.6 →
1.5 × 10−22 eV from the thickening of the disk [29] and
stellar streams [30], respectively.
FDM simulations also point to the existence of a central

solitonic DM core on the de Broglie scale [27]. In zoom-in
simulations of FDM galaxies [28], it is observed that the
central soliton is not stationary, as was previously thought,
but undergoes quasicoherent oscillations in its central
density, with a relative amplitude of Oð30%Þ and period
OðτoscÞ. This Letter presents the first study of the effect of
core oscillations on stellar dynamics.
FDM solitonic cores are observed to form in simulations

of dwarf galaxies withM ≈ 1010 M⊙ whenma ≈ 10−22 eV.
They form by direct collapse almost instantaneously when
the halo virializes. For larger FDM masses, however, it is

PHYSICAL REVIEW LETTERS 123, 051103 (2019)

0031-9007=19=123(5)=051103(6) 051103-1 © 2019 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.123.051103&domain=pdf&date_stamp=2019-07-31
https://doi.org/10.1103/PhysRevLett.123.051103
https://doi.org/10.1103/PhysRevLett.123.051103
https://doi.org/10.1103/PhysRevLett.123.051103
https://doi.org/10.1103/PhysRevLett.123.051103


not clear whether soliton formation in dwarf galaxies will
proceed in the same way, since the length scales involved
are much longer than the de Broglie wavelength. The time
scale for soliton formation by wave condensation increases
at larger particle masses [31], and thus, solitons may not
have had time to form in all halos for all FDM masses.
Assuming it forms, the central soliton has the density

profile of the ground state of the Schrödinger-Poisson
equation. The solution ρsolðrÞ is a one parameter family
described by the core radius, rc, and has a flat central
density, ∂rρj0 ¼ 0. The soliton mass within the core radius
is observed to follow a scaling relation with the host halo
mass, which at redshift z ¼ 0, is given by [32,33]

Msol ¼
M0

4

�
Mh

M0

�
1=3

; ð2Þ

where the scale M0 ≈ 4.4 × 107m−3=2
22 M⊙ is approximately

the Jeans mass. The relation Eq. (2) can be used to fix rc in
terms of Mh

rc ¼ 740

�
ma

10−21 eV

�
−1
�

Mh

107 M⊙

�
−1=3

pc: ð3Þ

The core-halo mass relation constrains FDM based on
galactic rotation curve observations [34].
The central soliton has some favorable consequences,

e.g., its stabilizing effect on the cold clump in Ursa Minor
[35], a possible explanation for cored density profiles in
dwarf spheroidal galaxies (dSphs) [27,36–38] and UFDs
[39], help alleviating the “too big to fail” problem [6,40],
and an explanation for excess mass in the center of the MW
[41]. These observations, as well as other hints from the
small-scale structure of DM [6,8,42], point to a preferred
FDM mass m22 ¼ OðfewÞ.
Eridanus II.—Eridanus II (Eri II) is aUFDwith a centrally

located star cluster [10,43]. Eri II is located at a distance of
370 kpc from the center of the MW. The mass within the
half-light radius is estimated as MEII ¼ 1.2þ0.4

−0.3 × 107 M⊙,
1Dvelocity dispersion σv ¼ 6.9þ1.2

−0.9 km s−1, and centralDM
density ρDM ¼ 0.15 M⊙ pc−3. The central star cluster has a
half light radius rh ¼ 13 pc, age TEII ¼ 3 → 12 Gyr, and
massM⋆ ¼ 2000 M⊙. These values have been shown to be
consistent with the expected dynamical evolution in the
presence of a DMcore, disfavoring a cuspyDMprofile [44].
We can use these basic properties of Eri II to assess the

relevant FDM scales. The total number of MW subhalos in
the 2σ range around MEII (Mlow ¼ 4 × 106 M⊙, Mup ¼
2 × 107 M⊙) is

nEIIðmaÞ ¼
Z

Mup

Mlow

d lnM
dnsubðmaÞ
d lnM

; ð4Þ

where dnsub=d lnM is the subhalo mass function (see
Fig. 1). We estimate the FDM subhalo mass function with

the fits of Ref. [45], which uses the methods of
Refs. [6,8,46,47] applied to merger trees, and includes a
model for tidal stripping [48]. The exclusion onma implied
by the existence of Eri II is found by setting nEIIðmaÞ ¼ 1,
and gives the approximate bound ma ≳ 8 × 10−22 eV if
FDM is all of the DM. As a comparison, we also test the
subhalo mass function of Refs. [49–51] computed using the
sharp-k filtering method [49]. The sharp-k filtering model
does not include stripping, and should be compared to the
preinfall mass of Eri II, 5 × 108 M⊙ [44]. The two models
give comparable constraints on the FDM mass. When
ma ¼ 10−21 eV, Eri-II is a single core remnant (see, also,
Ref. [52]). For larger values of ma, Eri II will have a
granular outer halo in addition to the core.
The stability of the star cluster in Eri II can be taken to

imply the existence of a DM core with radius rc ≥ rh.
Assuming that the total mass of Eri II is given by MEII,
using Eq. (3) withMh ¼ MEII, we can fix rc ¼ rh and solve
for ma to find the highest possible FDM mass consistent
with the star cluster residing within the soliton core, giving
ma ≈ 10−19 eV. Forma ≲ 10−20 eV, the Eri II star cluster is
guaranteed to be inside the soliton core. For 10−20 eV≲
ma ≲ 10−19 eV it is possible for the star cluster to lie either
inside or outside the soliton within the (approximate)
observational uncertainty on the location of the star cluster.
Diffusion approximation: Star cluster heating.—Small

fluctuations of the gravitational potential, averaged over the
orbital period, increase the energy of stellar orbits (gravi-
tational heating) [53]. This effect can be computed in the
diffusion approximation, provided that the stellar orbital
period, τorb, is long compared to the timescale of the
fluctuations which, in the core, is set by the period

FIG. 1. Number of subhalos in the range of the mass of Eri II as
a function of FDM mass ma. Solid blue line: from merger trees
with modified barrier (with tidal stripping: present day half-light
mass); dashed line: sharp-k filter (no tidal stripping: estimated
preinfall mass). We demand FDM produce at least one subhalo
(black horizontal line). The red horizontal line shows the CDM
prediction with tidal stripping.
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of stochastic oscillations τosc. The typical oscillation fre-
quency is ω ¼ maσ

2
3D, with σ3D ¼ ffiffiffi

3
p

σ1D. Taking the
stellar period to be the Keplerian period, we find

τorb
τosc

∼
ma

10−21 eV
: ð5Þ

We relate the spatial and temporal fluctuations with the
dispersion velocity v of the dark matter as r ¼ vt.
We neglect the intrinsic relaxation caused by the cluster
stars to obtain an upper limit on the allowed amplitude of
dark matter fluctuations. Two-body relaxation by cluster
stars has been shown to naturally explain the observed
radius of Eri II [44].
We derive the gravitational heating rate produced by a

fluctuating density field from the force correlation function,
closely following Ref. [54] for the case of a turbulent
baryon field (The main difference to [54] is that density
fluctuations are dominated by the smallest scale in our case
as opposed to the largest scale in theirs.). The force
correlation function is the Fourier transform of the force
power spectrum, given by

hFð0ÞFðrÞi ¼ 1

2π2

Z
PFðkÞ

sinðkrÞ
kr

k2dk; ð6Þ

assuming statistical isotropy. The force power spectrum
produced by fluctuations of the gravitational potential, Φ,
in the volume V,

PFðkÞ ¼ Vk2hjΦkj2i; ð7Þ

is related to the power spectrum of density fluctuations

PδðkÞ ¼ Vhjδkj2i; ð8Þ

where δk are the Fourier components of the density contrast
δ ¼ ρ=ρ0 − 1, by the Poisson equation k2Φk ¼ −4πGρ0δk.
We assume a k-independent shot noise density power

spectrum, Pδ ∼ n−1, with n ∼ ðlc=2Þ−3 determined by the
scalar field coherence length lc ¼ 2π=kc ∼ ðmvÞ−1. In this
case,

PFðkÞ ¼ ð4πGρ0Þ2Pδk−2; ð9Þ

and

hFð0ÞFðrÞi ¼ C
r

Z
kc

k0

sinðkrÞ
k

dk ¼ C
r
Sijkck0 ; ð10Þ

where k0 corresponds to the largest fluctuation scale
and C ¼ 8G2ρ20Pδ.
Following Ref. [54] (see also Ref. [55]), we compute the

velocity variance induced by the force fluctuations on the
trajectory of a star in the cluster during the time τ as

hðΔvÞ2i ¼ 2

Z
τ

0

ðτ − tÞhFð0ÞFðtÞidt

¼ 2

v2

Z
vτ

0

ðvτ − rÞhFð0ÞFðrÞidr; ð11Þ

where we used the dark matter velocity dispersion v to
relate the temporal fluctuations to the spatial ones as
explained above. In the diffusion limit, we demand that
τ ≫ τosc, i.e., that the orbital period of the stars is greater
than the fluctuation time scale.
In the limit k0vτ ≪ 1, Eq. (11) evaluates to

hðΔvÞ2i ¼ 2Cτ
v

�
ðkcvτÞ−1½1 − cosðkcvτÞ�

þ kcvτ2F3

�
1

2
;
1

2
;
3

2
;
3

2
;
3

2
;−

�
kcvτ
2

�
2
�

− SiðkcvτÞ
�
; ð12Þ

where 2F3 is the generalized hypergeometric function.
Considering the diffusion limit kcvτ ≫ 1, we can neglect
the first term in square brackets, the last one asymptotes
to π=2, and the middle one gives approximately
π=2½logðkcvτÞ þ 0.6�. Together, we obtain

hðΔvÞ2i ≃ πCτ
v

logðkcvτÞ; ð13Þ

where the logarithmic term can be identified with the
Coulomb logarithm, i.e., the logarithm of the ratio of the
largest and smallest relevant length scales of the system.
The relaxation time is defined as the time τ for which the

induced velocity variance equals the mean square velocity
of the stars v2�,

trelax ¼
v2�v

πC logðkcvτÞ
: ð14Þ

Finally, the diffusion coefficient for the gravitational
heating of the star cluster is given by [53]

D½ðΔvÞ2� ¼ v2�
trelax

¼ hðΔvÞ2i
τ

≃
8πG2ρ20Pδ

v
logðkcvτÞ: ð15Þ

It is interesting to compare Eq. (15) with the correspond-
ing diffusion coefficient for gravitational heating by mas-
sive compact halo objects (MACHOs) [53] applied to the
Eri II star cluster by Brandt [9]. Replacing the MACHO
mass in Brandt’s Eq. (1) with the mass of granular
quasiparticles [8], mqp ¼ ρ0ðlc=2Þ3 ¼ ρ0Pδ, we obtain
the identical result for the heating rate up to a factor offfiffiffi
2

p
and the precise definitions of the Coulomb logarithm

which are≲Oð10Þ in both cases. This demonstrates that the
quasiparticle model for FDM and shot noise density
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fluctuations produced by interference patterns of the scalar
field make equivalent predictions for the diffusion coef-
ficient (see [56] for an in-depth discussion of diffusion
coefficients in FDM scenarios).
Using dv2�=dt ¼ D and the virial theorem, one can find

an equation for the growth of the star cluster radius [9]. The
half-light radius rh evolves as

drh
dt

¼ CF
8πGρ0Pδ

v
logðkcvτÞ

�
α
M�
ρr2h

þ 2βrh

�
−1
; ð16Þ

where F ¼ Ωa=Ωd. For diffusion caused by the density
granules in the outer halo, we have C ¼ 1, while for
diffusion inside the core, we take C ¼ 0.3 to account for
the amplitude of core density fluctuations found in simu-
lations [28] (Supernova feedback is known to enhance the
amplitude of gravitational fluctuations and make them
more stochastic. This is confirmed by simulations with
FDM [57]. We consider the pure FDM case as a
conservative lower limit.). We use ten orbital periods of
stars in the cluster to estimate τ in the Coulomb logarithm
and set α ¼ 0.4, β ¼ 10 [9]. To constrain the axion mass
ma, we impose that the time for rh to grow from 2 to 13 pc
must be longer than the age of the cluster [9], 3 Gyr (an
initial value of 1 pc reduces the limit onma by ∼10%). The
exclusions on ðma;Ωa=ΩdÞ are shown in Fig. 2.
Star cluster resonances.—The star cluster evolution time

scale caused by coherent density fluctuations inside the
core can also be estimated using standard perturbation
theory [58]. The DM mass contained within the half-light
radius isMDMðr < rhÞ ≈ ð4=3ÞπρDMr2h ¼ 330 M⊙, assum-
ing the density is cored, givingMDM < M⋆, suggesting that
the star cluster is self-bound. Consider a star of massm⋆ on
a Keplerian orbit with semimajor axis a0 ¼ rh about the
center of mass of the star cluster, V0 ¼ −GM⋆m⋆=r ¼
−k=r, in terms of the action-angle variables ðwi; JiÞ in the
limit m⋆ ≪ M⋆. The unperturbed Hamiltonian is

H0 ¼
2π2m⋆k2

J23
; ð17Þ

giving w3 ¼ t=τorb þ const with τorb ¼ 0.1 Gyr is the
Keplerian period. The semimajor axis a0 ¼ J23=4π

2m⋆k.
The size fluctuations of the solitonic core [28] imply that

stars within the core see a fluctuation of mass within the
core radius. The perturbation Hamiltonian is

ΔH ¼ C
Ωa

Ωd
V0

MDM

M⋆
cosωosct; ð18Þ

where C ≈ 0.3 [28]. The time evolution of the semimajor
axis is given by

_a ¼ 2C
Ωa

Ωd

MDM

M⋆
a20ωosc

sinωosct
r

; ð19Þ

where rðtÞ is the unperturbed orbit. We fix eccentricity
e ¼ 0.5 and have verified that the results are not strongly
dependent on this choice.
The solution for aðtÞ is found by integrating Eq. (19)

with the initial condition að0Þ ¼ a0. After one long cycle
(the longer of τorb and τosc), the evolution settles down into
a new periodic state around a different value of a. We take
the final value of a to be the average over the period τav ¼
10 ×Maxðτorb; τoscÞ. Constraints are imposed by demand-
ing the average orbit size does not double, afinal=a0 < 2.
The perturbation analysis excludes four orbital resonances
in the range 10≲m22 ≲ 50, as shown in Fig. 2. Higher
masses lead to small expansion of the star cluster, but with
MDM ¼ 330 M⊙, they are not significant. When τosc < τorb
[see Eq. (5)], the soliton oscillations are adiabatic and do
not affect the orbital parameters. Thus, FDM masses below
the first resonance band, ma ≲ 10−21 eV, if consistent with
the formation of Eri II, would also be consistent with the
size and age of the star cluster.
Discussion.—Our results have placed strong constraints

on FDM as a large fraction of the DM in an as-yet-
unprobed high mass region. The formation of Eri II as a
subhalo demandsma ≳ 0.8 × 10−21 eV if FDM is all of the
DM. The range 0.8 × 10−21 eV≲ma ≲ 10−19 eV is further
disfavored by the observed size and age of the Eri II star
cluster. In the small window ma ¼ OðfewÞ × 10−21 eV, the

FIG. 2. FDM exclusions from the size and age of the Eri II star
cluster. For ma ≲ 10−20 eV (vertical dashed line) the star cluster
must be contained inside the soliton core and is affected by core
oscillations with amplitude C ¼ 0.3 (red). Forma ≳ 10−20 eV, the
star cluster may extend outside of the core and be subject to
granular density fluctuations in the halowith C ¼ 1 (blue). Shaded
regions are excluded by the diffusion approximation to heating of
the star cluster. The validity of the diffusion approximation
becomes questionable in the range ma ¼ OðfewÞ × 10−21 eV,
where the oscillation period and stellar period become similar
[Eq. (5)] (indicated by lighter shading in this region). Perturbation
theory analysis of core oscillations excludes a series of narrow
band resonances in the range 10−21 eV ≲ma ≲ 5 × 10−21 eV. If
Ωa=Ωd ¼ 1, Eri II does not form for ma ≲ 0.8 × 10−21 eV.
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diffusion approximation we have used is only partially
applicable; however, a series of resonances in this window
further affects star cluster stability.
The vanilla FDM model with no self-interactions is

excluded by black hole superradiance for masses in the
range 10−19 eV≲ma ≲ 10−16 eV [59,60]. In addition to
Eri II, Ref. [9] considered the survival of ultracompact
dwarfs with PBH DM. The bounds are equivalent to those
from Eri II under observational and modeling uncertainties.
Reference [61] found tighter constraints on light PBHs
from mass segregation in Segue I. If our analysis were
applied to this galaxy, the bound on FDM mass would be
increased higher than 10−19 eV, deeper into the region
disfavored by superradiance. A complete study of dynami-
cal constraints on FDM is desirable, but is unlikely to
change the main conclusions of the present Letter.
An FDM mass ma ≲ 10−22 eV is required for FDM to

provide a resolution of the cusp-core problem in dSphs
[27,36–38] (baryonic processes, e.g., feedback is expected
to play the dominant role [62–64]). A dominant FDM
component in the range 10−22 to 10−21 eV is in conflict
with the Lyman alpha forest (though, see Ref. [8]), and with
the formation of low mass satellite galaxies like Eri II. In
this range, there are no additional constraints from star
cluster heating in Eri II. Some authors have argued that
ma ∼OðfewÞ × 10−22 eV is favored by density profiles of
local dSphs [65] and the Milky Way core [41], and may
even be favored by an apparent turn over in the Hubble
Frontiers Fields luminosity function [42].
Thus, there is a small window remaining for FDM with

mass ∼10−21 eV. Such FDM will lie just below or in
between the resonance bands of Eri II, suggesting that star
cluster heating and resonances in other systems could be a
new tool to search for FDM.

This work made use of the open source packages
ASTROPY [66] and PYASTRONOMY (https://www.hs
.uni-hamburg.de/DE/Ins/Per/Czesla/PyA/PyA/index.html).
D. J. E. M. is supported by the Alexander von Humboldt
Foundation and the German Federal Ministry of Education
and Research.

Note added.—Recently, Ref. [56] appeared, which also
derives relaxation effects produced by FDM halo fluctua-
tions, applied to the cases of dynamical friction of very
massive objects (satellites, supermassive black holes), and
to the heating of early type galaxies.
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